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ABSTRACT

COVID-19, recognized as an outbreak in January 2020 and declared a pandemic shortly after, remains a global
clinical concern. This study developed a predictive model to classify patients by Relative Risk, which can be
used as a scoring system. It is a retrospective cohort study using data from patients admitted to the National
Institute for Infectious Diseases "Lazzaro Spallanzani” (Italy) between January 29 and March 28, 2020. Cox
Proportional Hazards models were created for patient admission (n = 218) and for the late stage of the disease
(n = 385). The models were validated using Machine Learning and tested for Cox assumption violations and
statistical power. Coefficients were extracted, and equations were derived to calculate Relative Risk. For Early-
stage Relative Risk (ERR), the following variables were used: Age Hazard Ratio (HR): 1.05 [95% CI: 1.02 -
1.08], RDW-SD (HR): 1.08 [95% CI: 1.02 - 1.14], Lymphocytopenia (HR): 3.23 [95% CI: 1.32 - 7.95], and

! Universidade Federal do Ceara (UFC), Fortaleza/CE — Brasil. E-mail: silvio.sobrinho@prof.ce.gov.br

2 University of Miami/Jackson Memorial Hospital Internal Medicine (UM/JMH), Miami, FL — Estados Unidos. E-

mail: beatriz.x.braz@gmail.com
3 Universidade Federal do Ceara (UFC), Fortaleza/CE — Brasil. E-mail: juvencio@ufc.br
4 Universidade Federal do Ceara (UFC), Fortaleza/CE — Brasil. E-mail: daloso@ufc.br



https://orcid.org/0000-0002-6055-5791
http://lattes.cnpq.br/1245397610888677
https://orcid.org/0000-0002-2241-5800
http://lattes.cnpq.br/7442313976777182
https://orcid.org/0000-0002-7321-3221
http://lattes.cnpq.br/4610025058115796
https://orcid.org/0000-0003-1842-420X
http://lattes.cnpq.br/0306680503261422
mailto:silvio.sobrinho@prof.ce.gov.br
mailto:beatriz.x.braz@gmail.com
mailto:juvencio@ufc.br
mailto:daloso@ufc.br

Revista Thema DOI: http://doi.org/10.15536/revistathema.24.2025.4002

V.24 ‘ n.2 ‘ 2025 ISSN: 2177-2894 (online) (

p.1-17 V)

Obesity (HR): 2.88 [95% CI: 1.08 - 7.69]. For Late-stage Relative Risk (LRR), the variables were: LDH (HR):
7.41 [95% CI: 3.00 - 18.28] and RDW-CV (HR): 5.74 [95% CI: 2.28 - 14.45]. This study provides models and
equations that can be implemented as a scoring system to aid decision-making by calculating instant Relative
Risk (RR).

Keywords: COVID-19; Score; Cox Proportional Hazards; Machine Learning.
RESUMO

A COVID-19, reconhecida como um surto em janeiro de 2020 e declarada uma pandemia pouco depois, ainda
€ uma preocupacao a nivel clinico. Este estudo desenvolveu um modelo preditivo para classificar pacientes por
Risco Relativo, que pode ser empregado como sistema escore. Trata-se de um estudo de coorte retrospectivo
usando dados de pacientes admitidos no Instituto Nacional de Doencas Infecciosas "Lazzaro Spallanzani”
(Italia) entre 29 de janeiro e 28 de marco de 2020. Modelos de Riscos Proporcionais de Cox foram criados
para a admissdo do paciente (n = 218) e para o estagio tardio da doenca (n = 385). Os modelos foram
validados através de Machine Learning e testados quanto as violagGes das premissas de Cox e Poder estatistico.
Coeficientes foram extraidos, e equagdes foram derivadas para calcular o Risco Relativo. Para o Risco Relativo
em Estagio Inicial (ERR), as seguintes variaveis foram usadas: Razdo de Risco (HR) da Idade: 1,05 [IC 95%:
1,02 - 1,08], RDW-SD (HR): 1,08 [IC 95%, 1,02 - 1,14], Linfocitopenia (HR): 3,23 [IC 95%, 1,32 - 7,95] e
Obesidade (HR): 2,88 [IC 95%, 1,08 - 7,69]. Para o Risco Relativo em Estagio Tardio (LRR), as variaveis foram:
LDH (HR): 7,41 [IC 95%, 3,00 - 18,28] e RDW-CV (HR): 5,74 [IC 95%, 2,28 - 14,45]. Este estudo fornece
modelos e equagdes que podem ser implementados como um sistema de pontuacdo para auxiliar na tomada
de decisdes calculando o Risco Relativo instantaneo (RR).

Palavras-chave: COVID-19; Escore; Riscos Proporcionais de Cox; Aprendizado de Maquina.

1. INTRODUCTION

The COVID-19 pandemic, identified as an outbreak in January 2020, continues to pose significant
challenges globally. Despite the production of highly effective vaccines, the situation remains
concerning due to several factors. At the time, these included disparities in healthcare resources,
such as the concentration of intensive care units (ICUs) in metropolitan areas, as well as shortages
of essential supplies and personnel (Alves, 2021; French et al., 2021).

Additionally, vaccination hesitancy (Middleman; Klein; Quinn, 2022; Shakeel et al., 2022) and the
emergence of new variants (WHO, 2022) contribute to the complexity of the situation. While vaccines
offer a high level of efficacy, they do not guarantee complete immunization. Furthermore, the uneven
distribution of vaccines globally means that a significant portion of the population remains
unvaccinated or under-vaccinated. Consequently, individuals are still at risk of developing severe
forms of the disease (Botton et al., 2021; Yek et al., 2022).

The pandemic has propelled modelling and forecasting to the forefront of public policy making.
However, it has also highlighted significant challenges, particularly the lack of standardisation in data
and the absence of unified data repositories for data-driven policy decisions (Bertozzi et al., 2020;
Ros et al., 2021). There has been a noticeable lack of effort in data anonymisation and the sharing
of raw data worldwide (Subbian et al., 2021; Wolkewitz; Puljak, 2020). Nevertheless, independent
research groups within health facilities have swiftly investigated the use of routine data, including
haematological variables, enzymatic biomarkers, cytokines, and other parameters (Velavan; Meyer,



Revista Thema DOI: http://doi.org/10.15536/revistathema.24.2025.4002

V.24 ‘ n.2 ‘ 2025 ISSN: 2177-2894 (online) (

p.1-17 V)

2020; Yuan et al.,, 2020), to establish monitoring parameters for patients. Some groups have
developed Machine Learning models that demonstrate good accuracy (Guan et al., 2021; Ma et al,,
2020; Vaid et al., 2020).

At the clinical level, two noteworthy models for monitoring are the '4c Score' (Jones et al., 2021;
Knight et al., 2020) and CIRC (Garibaldi et al., 2021). These models have become popular among
physicians due to their ease of use, as they are implemented as online calculators readily available
on MDCalc. The 4c Score is calculated using 9 variables, while the CIRC score uses 23 variables.
However, using a large number of variables in a model can lead to undesirable outcomes due to
model complexity. This complexity can cause the model to fit not only the relationship between
variables but also the random error, potentially leading to bias, overfitting, and other unwanted
effects (Lever; Krzywiski; Altman, 2016).

COVID-19 is still a matter of concern, and tools to assist in patient monitoring and resource allocation
remain pertinent. The objective of this research was to develop two models for use at different
stages of the disease, which can aid in patient follow-up at early and late stages of disease
progression. Both models allow for ranking patients by Relative Risk (RR), which can be adopted as
a score using easily acquired data such as complete blood count (CBC), comorbidities, and
demographic variables obtained during routine.

2. STUDY DESIGN AND METHODS
2.1 MODEL DEVELOPMENT GUIDELINES

This study was conducted in compliance with the 7ransparent reporting of a multivariable prediction
model for individual prognosis or diagnosis (TRIPOD statement) guideline (Collins et al., 2015).

2.2 DATA SOURCE AND ETHICS

Data for this study were obtained from PCR-confirmed COVID-19 patients admitted to the Italian
National Institute for Infectious Diseases "Lazzaro Spallanzani" (INMI) between 29th January and
28th March 2020 (Lanini et al.,, 2020). This data had been previously released under Ethics
Committee approval. According to the Brazilian National Council for Ethics in Research (CONEP),
data shared in public repositories containing anonymized data are waived of Ethics Committee
evaluation (Brazil, 2016).

2.3 VARIABLE CHARACTERIZATION

The following variables were considered for analysis: White Blood Cell count (WBC), Lymphocytes'
count (LYM), Monocytes' count (MONO), Neutrophils' count (NEU), Eosinophils' count (EOS),
Basophils' count (BAS), Red Blood Cell count (RBC), RDW-SD, RDW-CV, Mean Corpuscular Volume
(MCV), Haemoglobin concentration (HBC), Haematocrit (HCT), Mean Corpuscular Haemoglobin
Concentration (MCHC), Mean Corpuscular Haemoglobin (MCH), Platelets' count (PLT), Mean Platelet
Volume (MPV), Total Bilirubin (BILTOT), Direct Bilirubin (BILDIR), Lactate Dehydrogenase (LDH),
Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST), and Glucose (Glycaemia).
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The following comorbidities were also considered: Diabetes, Neoplasm, Cardiovascular Disease,
Immune Disorder, Chronic Obstructive Pulmonary Disease, Chronic Renal Failure, Metabolic Disorder,
and Obesity, along with Age and Sex. Right-censored patients were considered as discharged (not
deceased).

Additional discrete variables were computed such as anaemia, neutrophils per lymphocyte ratio,
lymphocytopenia, and thrombocytopenia, as they have been previously associated with increased
severity in other studies (Terpos et al., 2020; Zhang et al., 2020).

2.4 STATISTICAL ANALYSES

All data processing and analyses were conducted using R (4.0.1) (R Core Team, 2025). The original
dataset was retrieved (Lanini et al., 2020) and processed using the tidyverse (Wickham et al., 2021)
library. Baseline tables were created using the tableone (Yoshida; Bartel, 2021) library.

Missing data were imputed using Bayesian Principal Component Analysis (BPCA) (Schmitt; Mandel;
Guedj, 2015) from the pcaMethods (Stacklies et al.,, 2007) library. Continuous variables were
transformed using natural logarithm, square root, and an optimal lambda for Box-Cox transform
calculated using the forecast (Hyndman; Khandakar, 2008) library.

Cox Proportional Hazards models were created using the library surviva/ (Therneau, 2021). Forward-
backward step-wise regression was performed along with MASS library (Venables; Ripley, 2002).

Machine Learning models screening was conducted using Generalized Linear Model (GLM), Bayesian
Generalized Linear Model (Bayes GLM), and Lasso/Elastic-Net Regularized GLM (GLMNet) models
implemented by the caret Framework for Machine Learning in R (Kuhn, 2021). The training control
for cross-validation method settings was Repeated 20-fold cross-validation, 20 times. Prediction
results were assessed with AUC-ROC, PRG, PRC, and CC curves using the library MLeval/ (John,
2020).

Cox Proportional Hazards models of interest were tested for assumption violation using Schoenfeld’s
test with survival (Therneau, 2021) and survminer (Kassambara; Kosinski; Biecek, 2021) libraries.
Forest plots were created using the forestmode/ (Kennedy, 2020) library. Power effect analyses for
proportional hazards were calculated using the library powerSurvEpi (Qiu et al., 2021).

3. RESULTS

There were 10,671 entries from up to 508 patients. Patient characteristics can be found in the
baseline Tables 1 and 2, respectively. There were 4,840 and 8,778 entries for continuous variables,
of which 237 (4.89%) and 626 (7.13%) were missing, leaving 4,603 (95.1%) and 8,152 (92.86%)
available entries. There were no missing data for comorbidities and demographic data (Table 1 for
more details per variable).
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Table 1. Missing values from subsets used for Early-stage and Late-stage modelling. There were,
respectively 4840 and 8778 total entries for continuous variables, of which, respectively 237
(4.89 %) and 626 (7.13 %) were missing, 4603 (95.1 %) and 8152 (92.86 %) available. There
were no missing data for comorbidities and demographic data.

Early-stage subset Late-stage subset
; - Proportion - Proportion of
values(%) values(%)

White Blood cell count 0 0 0 0
Lymphocytes’ count 0 0 0 0
Monocytes’ count 0 0 0 0
Neutrophils’ count 0 0 0 0
Eosinophils’ count 0 0 0 0
Basophils” count 0 0 0 0
Red Blood Cells’ count 0 0 0 0
RDW-SD 0 0 0 0
RDW-CV 0 0 0 0
Mean Corpuscular Volume 0 0 0 0
Haemoglobin 0 0 0 0
Haematocrit 0 0 0 0
Mean Corpuscular Haemoglobin Concentration 0 0 0 0
Mean Corpuscular Haemoglobin 0 0 0 0
Platelets’ count 0 0 0 0
Mean Platelet Volume 1 0 8 2
Total Bilirubin 50 23 135 34
Direct Bilirubin 51 23 136 34
Lactate Dehydrogenase 58 26 162 41
Alanine Aminotransferase 29 13 71 18
Aspartate Aminotransferase 29 13 72 18
Glicemia 19 9 42 11
TOTAL 237 4.89 626 7.13

Source: authors' own elaboration.

Missing data were estimated using Bayesian PCA (BPCA) for each subset. After missing value
imputation, continuous variables were also subjected to transformation using natural logarithm,
square root, and optimal lambda for Box-Cox transform.

The data were split into two subsets using unique entries per patient. The subset used for early-
stage modelling included entries from the 8th day, while the subset for late-stage modelling included
the last lab data entry, up to 21 days of follow-up.

An initial screening was performed by univariate Cox Proportional Hazards regression. Only
significant variables (p < 0.05) with an increase on Hazard Ratio (HR > 1.1) were listed. This list
would further assist on manual variable removal on step-wise regression. There was a total of 26
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variables of interest on subset for Early-stage and 37 variables for Late-stage modelling (Tables 2 &
3).

Table 2. Summary of univariate Cox Proportional-Hazards regression for each variable transformed
in the Early-stage subset, including B coefficients, Hazard Ratios (HR), 95% confidence intervals
(CI) for HR, Wald test scores, and Wald p-values. Results displayed were filtered by p-value < 0.05

and HR > 1.1.
Variable Data transform B HR 95%CI for HR Wald test p-value
RDW-CV - 0.21 1.2 [1.1-1.4] 9.3 0.0023
Diabetes - 1.1 3 [1.4-6.4] 7.7 0.0054
Cancer - 1.2 3.2 [1.1-9] 4.7 0.03
Cardiovascular disease - 1.4 4.2 [2 -8.8] 14 0.00015
Chronic kidney disease - 0.98 2.7 [1-6.9] 4.1 0.043
Metabolic disorder - 1.4 4.2 [1.6 - 11] 8.7 0.0032
Anemia - 1.1 3.1 [1.5-6.4] 10 0.0016
Neutrophilia - 0.93 2.5 [1.1-5.6] 5.2 0.022
Lymphocytopenia - 1.5 43 [1.8 - 10] 10 0.0013
Neutrophils Square-root 0.54 1.7 [1.1-2.7] 5.4 0.02
RDW-SD Square-root 2.1 8 [3.5-18] 24 1.10E-06
RDW-CV Square-root 2.3 10 [2.4 - 43] 9.9 0.0016
MCV Square-root 1.7 5.5 [1.9 - 16] 9.9 0.0017
Glicemia Square-root 0.25 1.3 [1.2-1.4] 21 4.30E-06
Neutrophils Loge 0.82 2.3 [1.1-4.6] 5.2 0.022
RDW-SD Loge 9.3 11000 [250 -510000] 23 1.70E-06
RDW-CV Loge 6.4 600 [13 - 28000] 11 0.0012
MCV Loge 10 36000 [41 - 3.2e+07] 9.2 0.0024
Glicemia Loge 1.7 5.2 [2.3-12] 16 5.50E-05
RDW-CV Box-Cox 0.21 1.2 [1.1-1.4] 9.3 0.0023

Source: authors' own elaboration.
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Further, multivariate models were created with assistance of the forward-backward step-wise
regression. This method selects outperforming models with a lower Akaike Information Criterion
(AIC). When the step-wise method reached an optimum model (with minimum AIC), a variable with
infinite estimator and/or p-value > 0.05 was removed from the set of variables, and a hew model
was refitted.

Table 3. Summary of univariate Cox Proportional-Hazards regression for each variable transform in
late-stage subset with B coefficients, Hazard Ratios (HR), HR 95%CI, Wald tests scores and Wald
p-value scores. Results displayed were filtered by p-value < 0.05 and HR > 1.1.

Variable Data transform B HR 95%CI for HR Wald test  p-value
RDW-CV - 0.24 1.3 [1.2-1.4] 34 6.40E-09
MPV - 0.79 2.2 [1.7 - 2.8] 42 7.50E-11
Total bilirubin - 0.23 1.3 [1.2-1.4] 26 4.40E-07
Direct bilirubin - 031 1.4 [1.2-1.5] 30 4.00E-08
Cancer - 1 2.7 [1.2-6.4] 5.3 0.021
Cardiovascular disease - 1 2.8 [1.6 - 5] 13 0.00033
Respiratory disease - 07 2 [1.1-3.8] 4.7 0.031
Cronic Renal Failure - 1.2 3.4 [1.6-7.1] 11 0.00096
Obesity - 091 25 [1.2-5.1] 6.1 0.014
Anemia - 0.64 1.9 [1.1-3.4] 4.5 0.033
Neutrophilia - 1.1 29 [1.6 - 5.1] 13 0.00029
Thrombocytopenia - 1.1 3.1 [1.4 -6.9] 7.6 0.006
Lymphocytopenia - 19 6.5 [3.3-13] 28 1.30E-07
WBC Square-root 0.7 2 [1.5-2.8] 18 2.90E-05
Neutrophils Square-root 0.82 2.3 [1.7 - 3] 31 2.70E-08
RDW-SD Square-root 1.7 5.6 [3.6 - 8.8] 59 1.70E-14
RDW-CV Square-root 26 14 [5.9 - 33] 35 2.60E-09
MCV Square-root 1.4 4.1 [1.5-11] 8 0.0046
MPV Square-root 7.3 1500 [160 - 14000] 42 1.10E-10
Total bilirubin Square-root 1.3 3.6 [2.3-5.8] 30 4.50E-08
Direct bilirubin Square-root 1.5 45 [2.8-7.3] 38 7.20E-10
LDH Square-root 0.23 1.3 [1.2-1.4] 40 2.40E-10
AST Square-root 0.17 1.2 [1.1-1.3] 19 1.40E-05
Glicemia Square-root 0.17 1.2 [1.1-1.3] 8.4 0.0037
WBC Loge 1.3 3.8 [1.9-7.5] 15 0.00011
Neutrophils Loge 1.4 4.1 [2.4 - 7.1] 26 3.30E-07
RDW-SD Loge 8.2 3600 [450 - 29000] 60 1.20E-14
RDW-CV Loge 7.3 1500 [140 - 15000] 37 1.20E-09
MCV Loge 8.6 5500 [12 - 2600000] 7.5 0.006
MPV Loge 17 2.20E+07 Eggi%g]' 41 1.70E-10
Total bilirubin Loge 1.6 4.8 [2.7 - 8.5] 30 4.70E-08
Direct bilirubin Loge 1.6 4.8 [3-7.7] 43 5.60E-11
LDH Loge 26 13 [5.7 - 30] 37 1.40E-09
AST Loge 0.68 2 [1.4-2.8] 14 0.00017
Glicemia Loge 1.4 41 [1.6 - 10] 9.3 0.0023
RDW-CV Box-Cox 0.24 1.3 [1.2-1.4] 34 6.40E-09



Revista Thema DOI: http://doi.org/10.15536/revistathema.24.2025.4002

V24 | n2 | 2025 ISSN: 2177-2894 (online) (/)'
p.1-17 (%

MPV Box-Cox 0.79 2.2 [1.7 - 2.8] 42 7.50E-11
Total bilirubin Box-Cox 0.23 1.3 [1.2-1.4] 26 4.40E-07
Direct bilirubin Box-Cox 031 14 [1.2-1.5] 30 4.00E-08

Source: authors' own elaboration.

Two models for assessing relative risk at the early stage of the disease showed promising
performance, with high Concordance, Wald, and Likelihood test results (Table 4).

Table 4. Summary results of Cox-Proportional Hazards models #73 and #75, respectively.

Variables Concordance Likelihood test Wald test Score test
RDW-SD, Lymphocytopenia, 0.819 41.83 36.41 43.15
Age, Obesity (se = 0.035) (p < 2E-8) (p £ 2E-7) (p < 1E-8)

Cardiovascular disease,
Lymphocytopenia,
RDW-SD (Square-root)

0.808 37.53 35.00 41.82
(se = 0.033) (p < 4e-08) (p £1e-07) (p <4e-09)

Source: authors' own elaboration.

3.1 VALIDATION OF VARIABLE SELECTION

To determine the 'Early-stage' variable selection, machine learning models were created using the
caret framework. The combined metrics results of Cox Proportional Hazards and the Machine
Learning models (Figure 1), Schoenfeld’s and Power effect tests were paramount in concluding that
the variables that are more likely to predict severity at symptom onset are age, lymphocytopenia,
obesity, and RDW-SD.

Figure 1. Receiver Operating Characteristic (ROC) curves (AUC-ROC), Precision-Recall (PR) curves
(AUC-PR), and PR gain curves (AUC-PRG) outputs from logistic regression models using variable
sets #73 and #75 are presented. The GLMnet models outperformed therefore others were
removed from this graph.
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The modelling effort for the late stage of the disease resulted in up to 15 models. For the Late-stage
variable selection, relative risk was calculated for each patient using 15 models and used as the
ground truth. The data were then split into training (n = 193) and testing (n = 192) subsets. New
models were generated using the train set, and relative risks were calculated for patients in the test
set. Model metrics such as RMSE, MAE, R2, and AICs were calculated by comparing the ground truth
and predictions from the testing set Table 8. A workflow is depicted in Figure 2. Results are shown
at Table 5.

p.1-17

Figure 2. Workflow for assessing Late-stage models. Models were created using a set of variables
as listed in Table 7 (A) using all patient's data (n = 385). Risk scores were calculated for all
patients (B). The dataset was split into two subsets named Train' and Test' (C). Both sets were
split into half (~50%/50%, n = 193/192 respectively) stratified by the factor 'Death'. New models
were created using data from the 'Train' subset (D). Risk scores were calculated for each patient in
the 'Test' subset (E). Finally, risk scores calculated at step B were compared for the same patients
at step E (Table 5).

— e
Dataset Dataset
(100 %)
(A) 1 ©
Proportional ] Test | '\, Train |
Hazards 1(50%) | (50%) |
(D)
Models
% (B) Models
Predict ’
Dataset Iéplla(tme
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(F) t elative EAMSE
IS S
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Source: authors' own elaboration.

Later, variable selection was tested with a screening using machine learning models using caret
framework. Late-stage models’ options were narrowed for two candidates (Model #5 and Model
#13) (Figure 3).
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Table 5. Metrics comparing relative risk calculated by train models with ones calculated with
models built with the complete dataset.

Model # Variables R2 RMSE MAE AIC
10 WC (Loge), Glicemia (Loge), AST (Loge) 0.951324 0.647082  0.253971  202.0144
9 Chronic kidney disease, WBC (Loge), 0.023687  0.795856  0.30737  200.8062

Glicemia (Loge), AST (Loge)

WBC (Loge), Glicemia (Loge),

8 Cardiovascular disease, AST (Loge) 0.947096  1.186644 0.417198  197.5699

13 LDH (Loge), RDW-CV (Square-root) 0.715595 1.680189 0.460104  190.4549

11 MPV (Loge), Lymphocytes (Box-Cox) 0.921783  3.425232 0.967792  183.5541
Direct bilirubin (Loge),

14 RDW-SD (Square-root), Neutrophils (Loge) 0.883494  3.526217 0.499747  190.5306
Monocytes (Box-Cox),

12 MPV (Square-root), ROW-SD (Loge) 0.974116  3.689849 0.671614  176.2663

5 Neutrophils (Square-root), RDW-SD (Square-root), LDH 0788557 4.628773  1.070254  173.0173

(Square-root), Obesity, Age

1 MPV, Total Bilirubin, Cardiovascular disease, Obesity 0.619826  4.730657  1.173511  177.3043

Neutrophils (Loge), LDH (Loge),

4 Cardiovascular disease, Cronic kidney disease, Obesity 0.847539  5.092064  1.226934  180.9646
MCV (Square-root), Cardiovascular disease,

7 Obesity, AST (Loge) 0.686565  5.267525  1.487993  186.2132

6 LDH (Box-Cox), Cardiovascular disease, 0.957716 5703737 1.28384  183.7481

Obesity, Glicemia (Loge), AST (Loge)

15 RDW-CV (Loge), MCV (Loge), MPV (Loge) 0.91672 7.984673  1.135523  181.8466

Lymphocytes (Box-Cox), Monocytes (Box-Cox),

Cardiovascular disease, Obesity 0.742512  16.24481  3.608015  178.1428

2 Neutrophils, RDW-SD, MPV, Obesity, Age 0.921336  24.12355 4.500868  160.7398

Source: authors' own elaboration.

Figure 3. Receiver Operating Characteristic (ROC) curves (AUC-ROC), Precision-Recall (PR) curves
(AUC-PR), and PR gain curves (AUC-PRG) outputs from logistic regression models using variable
sets #5 and #13 are presented. The GLMnet models outperformed therefore others were removed
from this graph.
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Source: authors' own elaboration.
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3.2 FINAL COX PROPORTIONAL HAZARDS MODELS

Both models were checked for Cox Proportional Hazards assumption violation with Schoenfeld’s test
and Power effect analysis. None of the models violates the assumptions and were considered for
final decision. The coefficients were extracted and equations were deducted. For more details on
Hazard Ratios and 95% confidence interval, see Forest Plots (Figures 4 & 5).

Early-stage RR (ERR) may be calculated using Equation 1 as follows:

e([0.0749><RDWSD ]+[1.1735xLymphocytopenial+[0.048xAge]+[1.06x0besity])

ERR =
487

(1), where RDW-SD (fL), Lymphocytopenia (1 if Lymphocytes’ count lower than 1), Age (in
years) and Obesity (Yes = 1).

Figure 4. Forest plots for the Early-stage model are displayed below. The first column contains
variables, the second shows Hazard Ratio (HR) for each variable in each multivariate model, and
the third column shows HR with confidence intervals and p-values.

Variable n Hazard Ratio HR (Cl 95%) p-value

RDW-SD 218 |I 1.08 (1.02,1.14) 0.006

Lymphocytopenia 218 | L 3.23(1.32,7.95) 0.011

Age 218 - 1.05 (1.02, 1.08) 0.004

Obesity 218 |, i 2.88 (1.08, 7.69) 0.035
1 2 3 4567

Source: authors' own elaboration.

The Late-stage RR (LRR) may be calculated using Equation 2 below:

£ ([2.002302xIn (LDH+1) ]+[1.747124x VRDWCV+1])

LRR =
676840037
(2), where LDH (U/L) and RDW-CV (%). A higher relative risk (RR) implies a higher chance
of the event (death) occurring in a shorter period.

Figure 5. Forest plots for the Late-stage model are displayed below. The first column contains
variables, the second shows Hazard Ratio (HR) for each variable in each multivariate model, and
the third column shows HR with confidence intervals and p-values.

Variable n Hazard Ratio HR (Cl 95%) p-value

Log. LDH 385 | = /| 7.41 (3.00, 18.28) <0.001
|

RDW-CV 385 : L i 5.74 (2.28, 14.45) <0.001
| . . .
1 2 5 10

Source: authors' own elaboration.

Additionally, power analysis was calculated for both models using a specific method for Cox
Proportional Hazards. The Early-stage and Late-stage models present a Power effect of 91.28% and
97.8%, respectively. The correlation between covariates was low, implying controlled collinearity, if
any and low variances (Table 6).
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Table 6. Results from the power effect calculation for Cox Proportional Hazards models considering
the present data.

Early-stage model Late-stage model

n 218 385

0 1199269 2002302

o 0.05 0.05
Power 0.913 0.990

p? 0.034 0.068

o’ 0.250 0.146

v 0.151 0.132

Source: authors' own elaboration.

4 DISCUSSION

To date, COVID-19 remains a significant global concern, requiring innovative responses to the
escalating worldwide scenario caused by the novel coronavirus. The initial strategy proposed was
social and physical distancing. Early on, Response Teams developed reports forecasting the rate of
spread in several countries, highlighting the importance of high-quality public health data for data-
driven policy and decision-making (Bertozzi et al., 2020; Ros et al., 2021; Subbian et al., 2021).

However, due to the lack of raw data readily available in public repositories, we only considered the
data mentioned in the Methods section. Despite the good quality data available, this study has
limitations. There are many missing biomarkers of higher relevance constantly referred to in studies,
such as serum ferritin, CRP, and D-Dimer, as well as other demographic characteristics and
hospitalization/ICU data (Sp0O2, mechanical ventilation etc.). Nonetheless, studies between 2020 and
2022 conducted in different hospitals worldwide have identified recurring variables similar to those
adjusted in the models proposed in this study.

By fitting Cox Proportional Hazards models using different time ranges (5-8 days for Early-stage and
the last follow-up day for Late-stage), we obtained different variables/models, which are in
agreement with guidelines for patient admission/discharge (Stasi et al., 2020) and stages of the
disease (Griffin et al., 2021). We developed two models to assist in the Early-stage and Late-stage
of the disease. Both models were created independently using computer-aided variable removal,
resulting in a different set of variables, which align with clinical characteristics previously reported
for each scenario.

The Early-stage model was built using a time-frame of 5-8 days along with variables such as RDW,
Lymphocytopenia, Age, and Obesity. These variables have been previously identified as important
for risk assessment in COVID-19 patients by several studies (Terpos et al., 2020; Yuan et al., 2020;
Zeng et al., 2020) and also Machine Learning approaches (Djakpo et al., 2020; Ma et al., 2020; Pan
et al., 2020; Zheng et al., 2020).
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The Late-stage model used the last lab data reported, which best fitted with RDW and LDH variables.
Most studies that use haematological data highlight these two variables as important for patient
evaluation (Ferrari et al., 2020; Guan et al., 2021; Vaid et al., 2020).

The Red Blood Cell distribution width (RDW), a variable commonly reported in complete blood count
(CBC) exams, has been adjusted alongside other covariates in both models. RDW is useful in
determining the aetiology of different types of anaemia is found to be higher in COVID-19 patients,
especially in more severe cases. The anisocytosis may be due to the hyperinflammatory state caused
by diverse cytokines, mainly IL-6, which can alter haematopoiesis and increase oxidative stress
(Guani-Guerra et al., 2022; Moreno-Torres et al., 2021).

Lymphocytopenia was evaluated for each patient and also fitted the model. It has been described
as a marker for disease progression and an increase in severity (Stasi et al., 2020; Terpos et al.,
2020; Yuan et al., 2020). It is unclear why COVID-19 patients develop immunosuppression related
to cytokine storm but similar studies point that low level of lymphocytes on the first week of
symptom’s onset predicts SARS, therefore, treatments with immunomodulators might trigger
lymphocytes multiplication (Zou et al., 2021).

Obesity has been found to increase the risk of both hospitalization and death, showing a linear
relationship between BMI indexes and outcomes, especially in the early stage of the disease
(Albashir, 2020; Sawadogo et al., 2022).

Lactate dehydrogenase (LDH) is a ubiquitous enzyme present in cells that catalyses the
interconversion of pyruvate and lactate, playing a crucial role in cell metabolism. Its high presence
in the serum is related to cell and tissue damage (Ali et al.,, 2022; Henry et al., 2020; Jurisc;
Radenkovic; Konjevic, 2015). There are five different LDH isozymes expressed in various cell and
organ types, with LDH-3 being prevalent in lung tissue. However, levels of LDH-3 did not increase
significantly compared to other isoforms (Serrano-Lorenzo et al., 2021). This suggests that the serum
increase of LDH is related to systemic cell damage rather than specific tissue or organ damage, given
an increase in LDH-3 would mean pulmonary tissue damage. Nonetheless, LDH is found to be a
strong predictor of mortality in the Late-stage model, which aligns with the Multisystem
Inflammatory Phase, indicating the possibility of multiple organ failure (Griffin et al., 2021).

5. CONCLUSION

The COVID-19 Ranking Criteria (CRC-19) comprises two models to be used according to the first
day of symptom onset. For up to 10 days after symptom onset, the Early-stage model is used to
calculate relative risk. After 10 days or when presenting a critical condition, the patient may be in
the Primary/Secondary Infection and Multisystem Inflammatory Phases, and the Late-stage model
is recommended. Relative risks can be calculated daily to monitor disease progression. A higher
relative risk implies an increased probability of an event occurring in a shorter time.

In conclusion, our study introduces a workflow for assessing the evolution of COVID-19. This
workflow can be easily implemented using an electronic calculator, a spreadsheet processor, or a
patient monitoring system in healthcare facilities. By incorporating variables such as age,
lymphocytopenia, obesity, RDW-SD, and LDH, our models provide a method for calculating relative
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risk at different stages of the disease. These models can assist healthcare professionals in patient
follow-up and decision-making, ultimately improving patient care and outcomes.

6. DATA AVAILABILITY

Software Workspace backup containing Cox models, Machine Learning models and results in their
original nature are available at the Author’s GitHub <https://github.com/candidosobrinhosa/CRC-
19> allowing audit, reproducibility, further improvement and use for educational and scientific
purposes.
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