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ABSTRACT 

COVID-19, recognized as an outbreak in January 2020 and declared a pandemic shortly after, remains a global 
clinical concern. This study developed a predictive model to classify patients by Relative Risk, which can be 
used as a scoring system. It is a retrospective cohort study using data from patients admitted to the National 
Institute for Infectious Diseases "Lazzaro Spallanzani" (Italy) between January 29 and March 28, 2020. Cox 
Proportional Hazards models were created for patient admission (n = 218) and for the late stage of the disease 
(n = 385). The models were validated using Machine Learning and tested for Cox assumption violations and 
statistical power. Coefficients were extracted, and equations were derived to calculate Relative Risk. For Early-
stage Relative Risk (ERR), the following variables were used: Age Hazard Ratio (HR): 1.05 [95% CI: 1.02 - 
1.08], RDW-SD (HR): 1.08 [95% CI: 1.02 - 1.14], Lymphocytopenia (HR): 3.23 [95% CI: 1.32 - 7.95], and 
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Obesity (HR): 2.88 [95% CI: 1.08 - 7.69]. For Late-stage Relative Risk (LRR), the variables were: LDH (HR): 
7.41 [95% CI: 3.00 - 18.28] and RDW-CV (HR): 5.74 [95% CI: 2.28 - 14.45]. This study provides models and 
equations that can be implemented as a scoring system to aid decision-making by calculating instant Relative 
Risk (RR). 

Keywords: COVID-19; Score; Cox Proportional Hazards; Machine Learning. 

RESUMO 

A COVID-19, reconhecida como um surto em janeiro de 2020 e declarada uma pandemia pouco depois, ainda 
é uma preocupação a nível clínico. Este estudo desenvolveu um modelo preditivo para classificar pacientes por 
Risco Relativo, que pode ser empregado como sistema escore. Trata-se de um estudo de coorte retrospectivo 
usando dados de pacientes admitidos no Instituto Nacional de Doenças Infecciosas "Lazzaro Spallanzani" 
(Itália) entre 29 de janeiro e 28 de março de 2020. Modelos de Riscos Proporcionais de Cox foram criados 
para a admissão do paciente (n = 218) e para o estágio tardio da doença (n = 385). Os modelos foram 
validados através de Machine Learning e testados quanto às violações das premissas de Cox e Poder estatístico. 
Coeficientes foram extraídos, e equações foram derivadas para calcular o Risco Relativo. Para o Risco Relativo 
em Estágio Inicial (ERR), as seguintes variáveis foram usadas: Razão de Risco (HR) da Idade: 1,05 [IC 95%: 
1,02 - 1,08], RDW-SD (HR): 1,08 [IC 95%, 1,02 - 1,14], Linfocitopenia (HR): 3,23 [IC 95%, 1,32 - 7,95] e 
Obesidade (HR): 2,88 [IC 95%, 1,08 - 7,69]. Para o Risco Relativo em Estágio Tardio (LRR), as variáveis foram: 
LDH (HR): 7,41 [IC 95%, 3,00 - 18,28] e RDW-CV (HR): 5,74 [IC 95%, 2,28 - 14,45]. Este estudo fornece 
modelos e equações que podem ser implementados como um sistema de pontuação para auxiliar na tomada 
de decisões calculando o Risco Relativo instantâneo (RR). 

Palavras-chave: COVID-19; Escore; Riscos Proporcionais de Cox; Aprendizado de Máquina. 

1. INTRODUCTION 

The COVID-19 pandemic, identified as an outbreak in January 2020, continues to pose significant 
challenges globally. Despite the production of highly effective vaccines, the situation remains 
concerning due to several factors. At the time, these included disparities in healthcare resources, 
such as the concentration of intensive care units (ICUs) in metropolitan areas, as well as shortages 
of essential supplies and personnel (Alves, 2021; French et al., 2021). 

Additionally, vaccination hesitancy (Middleman; Klein; Quinn, 2022; Shakeel et al., 2022) and the 
emergence of new variants (WHO, 2022) contribute to the complexity of the situation. While vaccines 
offer a high level of efficacy, they do not guarantee complete immunization. Furthermore, the uneven 
distribution of vaccines globally means that a significant portion of the population remains 
unvaccinated or under-vaccinated. Consequently, individuals are still at risk of developing severe 
forms of the disease (Botton et al., 2021; Yek et al., 2022). 

The pandemic has propelled modelling and forecasting to the forefront of public policy making. 
However, it has also highlighted significant challenges, particularly the lack of standardisation in data 
and the absence of unified data repositories for data-driven policy decisions (Bertozzi et al., 2020; 
Ros et al., 2021). There has been a noticeable lack of effort in data anonymisation and the sharing 
of raw data worldwide (Subbian et al., 2021; Wolkewitz; Puljak, 2020). Nevertheless, independent 
research groups within health facilities have swiftly investigated the use of routine data, including 
haematological variables, enzymatic biomarkers, cytokines, and other parameters (Velavan; Meyer, 
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2020; Yuan et al., 2020), to establish monitoring parameters for patients. Some groups have 
developed Machine Learning models that demonstrate good accuracy (Guan et al., 2021; Ma et al., 
2020; Vaid et al., 2020). 

At the clinical level, two noteworthy models for monitoring are the '4c Score' (Jones et al., 2021; 
Knight et al., 2020) and CIRC (Garibaldi et al., 2021). These models have become popular among 
physicians due to their ease of use, as they are implemented as online calculators readily available 
on MDCalc. The 4c Score is calculated using 9 variables, while the CIRC score uses 23 variables. 
However, using a large number of variables in a model can lead to undesirable outcomes due to 
model complexity. This complexity can cause the model to fit not only the relationship between 
variables but also the random error, potentially leading to bias, overfitting, and other unwanted 
effects (Lever; Krzywiski; Altman, 2016). 

COVID-19 is still a matter of concern, and tools to assist in patient monitoring and resource allocation 
remain pertinent. The objective of this research was to develop two models for use at different 
stages of the disease, which can aid in patient follow-up at early and late stages of disease 
progression. Both models allow for ranking patients by Relative Risk (RR), which can be adopted as 
a score using easily acquired data such as complete blood count (CBC), comorbidities, and 
demographic variables obtained during routine. 

2. STUDY DESIGN AND METHODS 

2.1 MODEL DEVELOPMENT GUIDELINES 

This study was conducted in compliance with the Transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis (TRIPOD statement) guideline (Collins et al., 2015). 

2.2 DATA SOURCE AND ETHICS 

Data for this study were obtained from PCR-confirmed COVID-19 patients admitted to the Italian 
National Institute for Infectious Diseases "Lazzaro Spallanzani" (INMI) between 29th January and 
28th March 2020 (Lanini et al., 2020). This data had been previously released under Ethics 
Committee approval. According to the Brazilian National Council for Ethics in Research (CONEP), 
data shared in public repositories containing anonymized data are waived of Ethics Committee 
evaluation (Brazil, 2016). 

2.3 VARIABLE CHARACTERIZATION 

The following variables were considered for analysis: White Blood Cell count (WBC), Lymphocytes' 
count (LYM), Monocytes' count (MONO), Neutrophils' count (NEU), Eosinophils' count (EOS), 
Basophils' count (BAS), Red Blood Cell count (RBC), RDW-SD, RDW-CV, Mean Corpuscular Volume 
(MCV), Haemoglobin concentration (HBC), Haematocrit (HCT), Mean Corpuscular Haemoglobin 
Concentration (MCHC), Mean Corpuscular Haemoglobin (MCH), Platelets' count (PLT), Mean Platelet 
Volume (MPV), Total Bilirubin (BILTOT), Direct Bilirubin (BILDIR), Lactate Dehydrogenase (LDH), 
Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST), and Glucose (Glycaemia). 
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The following comorbidities were also considered: Diabetes, Neoplasm, Cardiovascular Disease, 
Immune Disorder, Chronic Obstructive Pulmonary Disease, Chronic Renal Failure, Metabolic Disorder, 
and Obesity, along with Age and Sex. Right-censored patients were considered as discharged (not 
deceased). 

Additional discrete variables were computed such as anaemia, neutrophils per lymphocyte ratio, 
lymphocytopenia, and thrombocytopenia, as they have been previously associated with increased 
severity in other studies (Terpos et al., 2020; Zhang et al., 2020). 

2.4 STATISTICAL ANALYSES 

All data processing and analyses were conducted using R (4.0.1) (R Core Team, 2025). The original 
dataset was retrieved (Lanini et al., 2020) and processed using the tidyverse (Wickham et al., 2021) 
library. Baseline tables were created using the tableone (Yoshida; Bartel, 2021) library. 

Missing data were imputed using Bayesian Principal Component Analysis (BPCA) (Schmitt; Mandel; 
Guedj, 2015) from the pcaMethods (Stacklies et al., 2007) library. Continuous variables were 
transformed using natural logarithm, square root, and an optimal lambda for Box-Cox transform 
calculated using the forecast (Hyndman; Khandakar, 2008) library. 

Cox Proportional Hazards models were created using the library survival  (Therneau, 2021). Forward-
backward step-wise regression was performed along with MASS library (Venables; Ripley, 2002). 

Machine Learning models screening was conducted using Generalized Linear Model (GLM), Bayesian 
Generalized Linear Model (Bayes GLM), and Lasso/Elastic-Net Regularized GLM (GLMNet) models 
implemented by the caret Framework for Machine Learning in R (Kuhn, 2021). The training control 
for cross-validation method settings was Repeated 20-fold cross-validation, 20 times. Prediction 
results were assessed with AUC-ROC, PRG, PRC, and CC curves using the library MLeval (John, 
2020). 

Cox Proportional Hazards models of interest were tested for assumption violation using Schoenfeld’s 
test with survival (Therneau, 2021) and survminer (Kassambara; Kosinski; Biecek, 2021) libraries. 
Forest plots were created using the forestmodel (Kennedy, 2020) library. Power effect analyses for 
proportional hazards were calculated using the library powerSurvEpi (Qiu et al., 2021). 

3. RESULTS 

There were 10,671 entries from up to 508 patients. Patient characteristics can be found in the 
baseline Tables 1 and 2, respectively. There were 4,840 and 8,778 entries for continuous variables, 
of which 237 (4.89%) and 626 (7.13%) were missing, leaving 4,603 (95.1%) and 8,152 (92.86%) 
available entries. There were no missing data for comorbidities and demographic data (Table 1 for 
more details per variable). 
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Table 1. Missing values from subsets used for Early-stage and Late-stage modelling. There were, 
respectively 4840 and 8778 total entries for continuous variables, of which, respectively 237 

(4.89 %) and 626 (7.13 %) were missing, 4603 (95.1 %) and 8152 (92.86 %) available. There 
were no missing data for comorbidities and demographic data. 

Variable 

Early-stage subset Late-stage subset 

Missing 
values 

Proportion 
of missing 
values(%) 

Missing 
values 

Proportion of 
missing 
values(%) 

White Blood cell count 0 0 0 0 
Lymphocytes’ count 0 0 0 0 
Monocytes’ count 0 0 0 0 
Neutrophils’ count 0 0 0 0 
Eosinophils’ count 0 0 0 0 
Basophils’ count 0 0 0 0 
Red Blood Cells’ count 0 0 0 0 
RDW-SD 0 0 0 0 
RDW-CV 0 0 0 0 
Mean Corpuscular Volume 0 0 0 0 
Haemoglobin 0 0 0 0 
Haematocrit 0 0 0 0 
Mean Corpuscular Haemoglobin Concentration 0 0 0 0 
Mean Corpuscular Haemoglobin 0 0 0 0 
Platelets’ count 0 0 0 0 
Mean Platelet Volume 1 0 8 2 
Total Bilirubin 50 23 135 34 
Direct Bilirubin 51 23 136 34 
Lactate Dehydrogenase 58 26 162 41 
Alanine Aminotransferase 29 13 71 18 
Aspartate Aminotransferase 29 13 72 18 
Glicemia 19 9 42 11 
TOTAL 237 4.89 626 7.13 

Source: authors' own elaboration. 
 

Missing data were estimated using Bayesian PCA (BPCA) for each subset. After missing value 
imputation, continuous variables were also subjected to transformation using natural logarithm, 
square root, and optimal lambda for Box-Cox transform. 

The data were split into two subsets using unique entries per patient. The subset used for early-
stage modelling included entries from the 8th day, while the subset for late-stage modelling included 
the last lab data entry, up to 21 days of follow-up. 

An initial screening was performed by univariate Cox Proportional Hazards regression. Only 
significant variables (p < 0.05) with an increase on Hazard Ratio (HR > 1.1) were listed. This list 
would further assist on manual variable removal on step-wise regression. There was a total of 26 
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variables of interest on subset for Early-stage and 37 variables for Late-stage modelling (Tables 2 & 
3). 

Table 2. Summary of univariate Cox Proportional-Hazards regression for each variable transformed 
in the Early-stage subset, including β coefficients, Hazard Ratios (HR), 95% confidence intervals 

(CI) for HR, Wald test scores, and Wald p-values. Results displayed were filtered by p-value < 0.05 
and HR > 1.1. 

Variable Data transform β HR 95%CI for HR Wald test p-value 

RDW-CV  - 0.21 1.2 [1.1 - 1.4] 9.3 0.0023 

Diabetes  - 1.1 3 [1.4 - 6.4] 7.7 0.0054 

Cancer  - 1.2 3.2 [1.1 - 9] 4.7 0.03 

Cardiovascular disease  - 1.4 4.2 [2 - 8.8] 14 0.00015 

Chronic kidney disease  - 0.98 2.7 [1 - 6.9] 4.1 0.043 

Metabolic disorder  - 1.4 4.2 [1.6 - 11] 8.7 0.0032 

Anemia  - 1.1 3.1 [1.5 - 6.4] 10 0.0016 

Neutrophilia  - 0.93 2.5 [1.1 - 5.6] 5.2 0.022 

Lymphocytopenia  - 1.5 4.3 [1.8 - 10] 10 0.0013 

Neutrophils Square-root 0.54 1.7 [1.1 - 2.7] 5.4 0.02 

RDW-SD Square-root 2.1 8 [3.5 - 18] 24 1.10E-06 

RDW-CV Square-root 2.3 10 [2.4 - 43] 9.9 0.0016 

MCV Square-root 1.7 5.5 [1.9 - 16] 9.9 0.0017 

Glicemia Square-root 0.25 1.3 [1.2 - 1.4] 21 4.30E-06 

Neutrophils Loge 0.82 2.3 [1.1 - 4.6] 5.2 0.022 

RDW-SD Loge 9.3 11000 [250 - 510000] 23 1.70E-06 

RDW-CV Loge 6.4 600 [13 - 28000] 11 0.0012 

MCV Loge 10 36000 [41 - 3.2e+07] 9.2 0.0024 

Glicemia Loge 1.7 5.2 [2.3 - 12] 16 5.50E-05 

RDW-CV Box-Cox 0.21 1.2 [1.1 - 1.4] 9.3 0.0023 

Source: authors' own elaboration. 
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Further, multivariate models were created with assistance of the forward-backward step-wise 
regression. This method selects outperforming models with a lower Akaike Information Criterion 
(AIC). When the step-wise method reached an optimum model (with minimum AIC), a variable with 
infinite estimator and/or p-value > 0.05 was removed from the set of variables, and a new model 
was refitted. 

Table 3. Summary of univariate Cox Proportional-Hazards regression for each variable transform in 
late-stage subset with β coefficients, Hazard Ratios (HR), HR 95%CI, Wald tests scores and Wald 

p-value scores. Results displayed were filtered by p-value < 0.05 and HR > 1.1. 

Variable Data transform β HR 95%CI for HR Wald test p-value 
RDW-CV - 0.24 1.3 [1.2 - 1.4] 34 6.40E-09 
MPV - 0.79 2.2 [1.7 - 2.8] 42 7.50E-11 
Total bilirubin - 0.23 1.3 [1.2 - 1.4] 26 4.40E-07 
Direct bilirubin - 0.31 1.4 [1.2 - 1.5] 30 4.00E-08 
Cancer - 1 2.7 [1.2 - 6.4] 5.3 0.021 
Cardiovascular disease - 1 2.8 [1.6 - 5] 13 0.00033 
Respiratory disease - 0.7 2 [1.1 - 3.8] 4.7 0.031 
Cronic Renal Failure - 1.2 3.4 [1.6 - 7.1] 11 0.00096 
Obesity - 0.91 2.5 [1.2 - 5.1] 6.1 0.014 
Anemia - 0.64 1.9 [1.1 - 3.4] 4.5 0.033 
Neutrophilia - 1.1 2.9 [1.6 - 5.1] 13 0.00029 
Thrombocytopenia - 1.1 3.1 [1.4 - 6.9] 7.6 0.006 
Lymphocytopenia - 1.9 6.5 [3.3 - 13] 28 1.30E-07 
WBC Square-root 0.7 2 [1.5 - 2.8] 18 2.90E-05 
Neutrophils Square-root 0.82 2.3 [1.7 - 3] 31 2.70E-08 
RDW-SD Square-root 1.7 5.6 [3.6 - 8.8] 59 1.70E-14 
RDW-CV Square-root 2.6 14 [5.9 - 33] 35 2.60E-09 
MCV Square-root 1.4 4.1 [1.5 - 11] 8 0.0046 
MPV Square-root 7.3 1500 [160 - 14000] 42 1.10E-10 
Total bilirubin Square-root 1.3 3.6 [2.3 - 5.8] 30 4.50E-08 
Direct bilirubin Square-root 1.5 4.5 [2.8 - 7.3] 38 7.20E-10 
LDH Square-root 0.23 1.3 [1.2 - 1.4] 40 2.40E-10 
AST Square-root 0.17 1.2 [1.1 - 1.3] 19 1.40E-05 
Glicemia Square-root 0.17 1.2 [1.1 - 1.3] 8.4 0.0037 
WBC Loge 1.3 3.8 [1.9 - 7.5] 15 0.00011 
Neutrophils Loge 1.4 4.1 [2.4 - 7.1] 26 3.30E-07 
RDW-SD Loge 8.2 3600 [450 - 29000] 60 1.20E-14 
RDW-CV Loge 7.3 1500 [140 - 15000] 37 1.20E-09 
MCV Loge 8.6 5500 [12 - 2600000] 7.5 0.006 

MPV Loge 17 2.20E+07 [120000 - 
3.9e+09] 41 1.70E-10 

Total bilirubin Loge 1.6 4.8 [2.7 - 8.5] 30 4.70E-08 
Direct bilirubin Loge 1.6 4.8 [3 - 7.7] 43 5.60E-11 
LDH Loge 2.6 13 [5.7 - 30] 37 1.40E-09 
AST Loge 0.68 2 [1.4 - 2.8] 14 0.00017 
Glicemia Loge 1.4 4.1 [1.6 - 10] 9.3 0.0023 
RDW-CV Box-Cox 0.24 1.3 [1.2 - 1.4] 34 6.40E-09 
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MPV Box-Cox 0.79 2.2 [1.7 - 2.8] 42 7.50E-11 
Total bilirubin Box-Cox 0.23 1.3 [1.2 - 1.4] 26 4.40E-07 
Direct bilirubin Box-Cox 0.31 1.4 [1.2 - 1.5] 30 4.00E-08 

Source: authors' own elaboration. 
 

Two models for assessing relative risk at the early stage of the disease showed promising 
performance, with high Concordance, Wald, and Likelihood test results (Table 4). 

Table 4. Summary results of Cox-Proportional Hazards models #73 and #75, respectively. 

Variables Concordance Likelihood test Wald test Score test 

RDW-SD, Lymphocytopenia, 
Age, Obesity 

0.819 
(se = 0.035) 

41.83 
(p ≤ 2E-8) 

36.41 
(p ≤ 2E-7) 

43.15 
(p ≤ 1E-8) 

Cardiovascular disease, 
Lymphocytopenia, 
RDW-SD (Square-root) 

0.808 
(se = 0.033) 

37.53 
(p ≤ 4e-08) 

35.00 
(p ≤1e-07) 

41.82 
(p ≤4e-09) 

Source: authors' own elaboration. 
 

3.1 VALIDATION OF VARIABLE SELECTION 

To determine the 'Early-stage' variable selection, machine learning models were created using the 
caret framework. The combined metrics results of Cox Proportional Hazards and the Machine 
Learning models (Figure 1), Schoenfeld’s and Power effect tests were paramount in concluding that 
the variables that are more likely to predict severity at symptom onset are age, lymphocytopenia, 
obesity, and RDW-SD. 

Figure 1. Receiver Operating Characteristic (ROC) curves (AUC-ROC), Precision-Recall (PR) curves 
(AUC-PR), and PR gain curves (AUC-PRG) outputs from logistic regression models using variable 

sets #73 and #75 are presented. The GLMnet models outperformed therefore others were 
removed from this graph. 

 
Source: authors' own elaboration. 
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The modelling effort for the late stage of the disease resulted in up to 15 models. For the Late-stage 
variable selection, relative risk was calculated for each patient using 15 models and used as the 
ground truth. The data were then split into training (n = 193) and testing (n = 192) subsets. New 
models were generated using the train set, and relative risks were calculated for patients in the test 
set. Model metrics such as RMSE, MAE, R², and AICs were calculated by comparing the ground truth 
and predictions from the testing set Table 8. A workflow is depicted in Figure 2. Results are shown 
at Table 5. 

Figure 2. Workflow for assessing Late-stage models. Models were created using a set of variables 
as listed in Table 7 (A) using all patient's data (n = 385). Risk scores were calculated for all 

patients (B). The dataset was split into two subsets named 'Train' and 'Test' (C). Both sets were 
split into half (~50%/50%, n = 193/192 respectively) stratified by the factor 'Death'. New models 
were created using data from the 'Train' subset (D). Risk scores were calculated for each patient in 
the 'Test' subset (E). Finally, risk scores calculated at step B were compared for the same patients 

at step E (Table 5). 

 
Source: authors' own elaboration. 

 
Later, variable selection was tested with a screening using machine learning models using caret 
framework. Late-stage models’ options were narrowed for two candidates (Model #5 and Model 
#13) (Figure 3). 
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Table 5. Metrics comparing relative risk calculated by train models with ones calculated with 
models built with the complete dataset. 

Model # Variables R² RMSE MAE AIC 
10 WC (Loge), Glicemia (Loge), AST (Loge) 0.951324 0.647082 0.253971 202.0144 

9 Chronic kidney disease, WBC (Loge), 
Glicemia (Loge), AST (Loge) 0.923687 0.795856 0.30737 200.8062 

8 WBC (Loge), Glicemia (Loge), 
Cardiovascular disease, AST (Loge) 0.947096 1.186644 0.417198 197.5699 

13 LDH (Loge), RDW-CV (Square-root) 0.715595 1.680189 0.460104 190.4549 
11 MPV (Loge), Lymphocytes (Box-Cox) 0.921783 3.425232 0.967792 183.5541 

14 Direct bilirubin (Loge), 
RDW-SD (Square-root), Neutrophils (Loge) 0.883494 3.526217 0.499747 190.5306 

12 Monocytes (Box-Cox), 
MPV (Square-root), RDW-SD (Loge) 0.974116 3.689849 0.671614 176.2663 

5 Neutrophils (Square-root), RDW-SD (Square-root), LDH 
(Square-root), Obesity, Age 0.788557 4.628773 1.070254 173.0173 

1 MPV, Total Bilirubin, Cardiovascular disease, Obesity 0.619826 4.730657 1.173511 177.3043 

4 Neutrophils (Loge), LDH (Loge), 
Cardiovascular disease, Cronic kidney disease, Obesity 0.847539 5.092064 1.226934 180.9646 

7 MCV (Square-root), Cardiovascular disease, 
Obesity, AST (Loge) 0.686565 5.267525 1.487993 186.2132 

6 LDH (Box-Cox), Cardiovascular disease, 
Obesity, Glicemia (Loge), AST (Loge) 0.957716 5.703737 1.28384 183.7481 

15 RDW-CV (Loge), MCV (Loge), MPV (Loge) 0.91672 7.984673 1.135523 181.8466 

3 Lymphocytes (Box-Cox), Monocytes (Box-Cox), 
Cardiovascular disease, Obesity 0.742512 16.24481 3.608015 178.1428 

2 Neutrophils, RDW-SD, MPV, Obesity, Age 0.921336 24.12355 4.500868 160.7398 

Source: authors' own elaboration. 
 

Figure 3. Receiver Operating Characteristic (ROC) curves (AUC-ROC), Precision-Recall (PR) curves 
(AUC-PR), and PR gain curves (AUC-PRG) outputs from logistic regression models using variable 

sets #5 and #13 are presented. The GLMnet models outperformed therefore others were removed 
from this graph. 

 
Source: authors' own elaboration. 
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3.2 FINAL COX PROPORTIONAL HAZARDS MODELS 

Both models were checked for Cox Proportional Hazards assumption violation with Schoenfeld’s test 
and Power effect analysis. None of the models violates the assumptions and were considered for 
final decision. The coefficients were extracted and equations were deducted. For more details on 
Hazard Ratios and 95% confidence interval, see Forest Plots (Figures 4 & 5). 

Early-stage RR (ERR) may be calculated using Equation 1 as follows: 

𝐸𝐸𝐸𝐸𝐸𝐸 =  𝑒𝑒
([0.0749×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ]+[1.1735×𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜]+[0.048×𝐴𝐴𝐴𝐴𝐴𝐴]+[1.06×𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂])

487
     

 (1), where RDW-SD (fL), Lymphocytopenia (1 if Lymphocytes’ count lower than 1), Age (in 
years) and Obesity (Yes = 1). 

 

Figure 4. Forest plots for the Early-stage model are displayed below. The first column contains 
variables, the second shows Hazard Ratio (HR) for each variable in each multivariate model, and 

the third column shows HR with confidence intervals and p-values. 

 
Source: authors' own elaboration. 

 

The Late-stage RR (LRR) may be calculated using Equation 2 below: 

𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑒𝑒
([2.002302×𝑙𝑙𝑙𝑙 (𝐿𝐿𝐿𝐿𝐿𝐿+1) ]+[1.747124× √𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅+1])

676840037
        

 (2), where LDH (U/L) and RDW-CV (%). A higher relative risk (RR) implies a higher chance 
of the event (death) occurring in a shorter period. 

Figure 5. Forest plots for the Late-stage model are displayed below. The first column contains 
variables, the second shows Hazard Ratio (HR) for each variable in each multivariate model, and 

the third column shows HR with confidence intervals and p-values. 

 
Source: authors' own elaboration. 

 

Additionally, power analysis was calculated for both models using a specific method for Cox 
Proportional Hazards. The Early-stage and Late-stage models present a Power effect of 91.28% and 
97.8%, respectively. The correlation between covariates was low, implying controlled collinearity, if 
any and low variances (Table 6). 
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Table 6. Results from the power effect calculation for Cox Proportional Hazards models considering 
the present data. 

  Early-stage model Late-stage model 
n 218 385 
θ e1.199269 e2.002302 
α 0.05 0.05 

Power 0.913 0.990 
ρ2 0.034 0.068 
σ2 0.250 0.146 
Ψ 0.151 0.132 

Source: authors' own elaboration. 
 

4 DISCUSSION 

To date, COVID-19 remains a significant global concern, requiring innovative responses to the 
escalating worldwide scenario caused by the novel coronavirus. The initial strategy proposed was 
social and physical distancing. Early on, Response Teams developed reports forecasting the rate of 
spread in several countries, highlighting the importance of high-quality public health data for data-
driven policy and decision-making (Bertozzi et al., 2020; Ros et al., 2021; Subbian et al., 2021). 

However, due to the lack of raw data readily available in public repositories, we only considered the 
data mentioned in the Methods section. Despite the good quality data available, this study has 
limitations. There are many missing biomarkers of higher relevance constantly referred to in studies, 
such as serum ferritin, CRP, and D-Dimer, as well as other demographic characteristics and 
hospitalization/ICU data (SpO2, mechanical ventilation etc.). Nonetheless, studies between 2020 and 
2022 conducted in different hospitals worldwide have identified recurring variables similar to those 
adjusted in the models proposed in this study. 

By fitting Cox Proportional Hazards models using different time ranges (5-8 days for Early-stage and 
the last follow-up day for Late-stage), we obtained different variables/models, which are in 
agreement with guidelines for patient admission/discharge (Stasi et al., 2020) and stages of the 
disease (Griffin et al., 2021). We developed two models to assist in the Early-stage and Late-stage 
of the disease. Both models were created independently using computer-aided variable removal, 
resulting in a different set of variables, which align with clinical characteristics previously reported 
for each scenario. 

The Early-stage model was built using a time-frame of 5-8 days along with variables such as RDW, 
Lymphocytopenia, Age, and Obesity. These variables have been previously identified as important 
for risk assessment in COVID-19 patients by several studies (Terpos et al., 2020; Yuan et al., 2020; 
Zeng et al., 2020) and also Machine Learning approaches (Djakpo et al., 2020; Ma et al., 2020; Pan 
et al., 2020; Zheng et al., 2020). 
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The Late-stage model used the last lab data reported, which best fitted with RDW and LDH variables. 
Most studies that use haematological data highlight these two variables as important for patient 
evaluation (Ferrari et al., 2020; Guan et al., 2021; Vaid et al., 2020). 

The Red Blood Cell distribution width (RDW), a variable commonly reported in complete blood count 
(CBC) exams, has been adjusted alongside other covariates in both models. RDW is useful in 
determining the aetiology of different types of anaemia is found to be higher in COVID-19 patients, 
especially in more severe cases. The anisocytosis may be due to the hyperinflammatory state caused 
by diverse cytokines, mainly IL-6, which can alter haematopoiesis and increase oxidative stress 
(Guaní-Guerra et al., 2022; Moreno-Torres et al., 2021). 

Lymphocytopenia was evaluated for each patient and also fitted the model. It has been described 
as a marker for disease progression and an increase in severity (Stasi et al., 2020; Terpos et al., 
2020; Yuan et al., 2020). It is unclear why COVID-19 patients develop immunosuppression related 
to cytokine storm but similar studies point that low level of lymphocytes on the first week of 
symptom’s onset predicts SARS, therefore, treatments with immunomodulators might trigger 
lymphocytes multiplication (Zou et al., 2021). 

Obesity has been found to increase the risk of both hospitalization and death, showing a linear 
relationship between BMI indexes and outcomes, especially in the early stage of the disease 

(Albashir, 2020; Sawadogo et al., 2022). 

Lactate dehydrogenase (LDH) is a ubiquitous enzyme present in cells that catalyses the 
interconversion of pyruvate and lactate, playing a crucial role in cell metabolism. Its high presence 
in the serum is related to cell and tissue damage (Ali et al., 2022; Henry et al., 2020; Jurisc; 
Radenkovic; Konjevic, 2015). There are five different LDH isozymes expressed in various cell and 
organ types, with LDH-3 being prevalent in lung tissue. However, levels of LDH-3 did not increase 
significantly compared to other isoforms (Serrano-Lorenzo et al., 2021). This suggests that the serum 
increase of LDH is related to systemic cell damage rather than specific tissue or organ damage, given 
an increase in LDH-3 would mean pulmonary tissue damage. Nonetheless, LDH is found to be a 
strong predictor of mortality in the Late-stage model, which aligns with the Multisystem 
Inflammatory Phase, indicating the possibility of multiple organ failure (Griffin et al., 2021). 

5. CONCLUSION 

The COVID-19 Ranking Criteria (CRC-19) comprises two models to be used according to the first 
day of symptom onset. For up to 10 days after symptom onset, the Early-stage model is used to 
calculate relative risk. After 10 days or when presenting a critical condition, the patient may be in 
the Primary/Secondary Infection and Multisystem Inflammatory Phases, and the Late-stage model 
is recommended. Relative risks can be calculated daily to monitor disease progression. A higher 
relative risk implies an increased probability of an event occurring in a shorter time. 

In conclusion, our study introduces a workflow for assessing the evolution of COVID-19. This 
workflow can be easily implemented using an electronic calculator, a spreadsheet processor, or a 
patient monitoring system in healthcare facilities. By incorporating variables such as age, 
lymphocytopenia, obesity, RDW-SD, and LDH, our models provide a method for calculating relative 
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risk at different stages of the disease. These models can assist healthcare professionals in patient 
follow-up and decision-making, ultimately improving patient care and outcomes. 

6. DATA AVAILABILITY 

Software Workspace backup containing Cox models, Machine Learning models and results in their 
original nature are available at the Author’s GitHub <https://github.com/candidosobrinhosa/CRC-
19> allowing audit, reproducibility, further improvement and use for educational and scientific 
purposes. 
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