New method for the optical characterization of thin films
DOI:
https://doi.org/10.15536/reducarmais.8.2024.4023Keywords:
Thin films, Refractive index, Optical transmission, Extinction coefficient, Envelope methodAbstract
The optical characterization of materials is fundamental for both basic and applied research. New analysis methodologies, more practical or with greater precision and/or scope of use, are of significant importance to the field. This article presents a new method that allows obtaining the thickness and optical properties across the entire UV-Vis range of thin films. Unlike the current methods based on the envelope method of Manifacier, this one is based on the exact equation for the transmittance of films on a finite substrate. Optical transmittance spectra generated theoretically and obtained experimentally for AlN and TiOxNy films deposited by sputtering were analyzed. The results were compared with those of the envelope method and/or ellipsometry. In applicable cases, the results were similar, but the advances of this new approach are clear, allowing: (i) optical analysis of films without a minimum thickness limit, (ii) optical characterization even in the high absorption region of the spectrum, and (iii) models for non-homogeneous films with dispersed nanoparticles. The proposed method is more versatile and applicable than the envelope method.
Downloads
References
ANDREANI, Lucio Claudio; LISCIDINI, Marco; GERACE, Dario; FRANCO, Davide; BRAMBILLA, Giovanni; CUMMING, David R. S. Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides. Applied Physics Letters, v. 89, 2006.
BARMAN, Prasanta B.; SHARMA, Ishu; TRIPATHI, Shailendra K. Effect of Bi addition on the optical behavior of a-Ge-Se-In-Bi thin films. Applied Surface Science, v. 255, p. 2791-2795, 2008.
BILYJ, Jurij M.; KOSOBUTSKYY, Petro S.; KUSHNIR, Oleg P. Demonstration of optical beating in the reflectance and transmittance spectra of multilayer structures. Ukrainian Journal of Physical Optics, v. 12, p. 89-100, 2011.
BONELLI, Thiago Scremin. Produção e Caracterização Estrutural de Filmes Finos Nanoestruturados de TiOxNy e Células Solares (DSSCs) de Nanotubos de TiO2. Dissertação (Mestrado em Física) - Universidade Federal de Mato Grosso, 2013.
CHENG, I-Chun; GLESKOVA, Helena; WAGNER, Sigurd; WU, Meng. Silicon for thin-film transistors. Thin Solid Films, v. 430, p. 15-19, 2003.
CISNEROS, Jorge I. Optical characterization of dielectric and semiconductor thin films by use of transmission data. Applied Optics, v. 37, n. 22, p. 5262-5270, 1998.
CULLITY, BERNARD DENNIS. Elements of X-Ray Diffraction. Reading, MA: Addison-Wesley Publishing Company, 1967.
DEVORE, JOHN R. Refractive Index of Rutile and Sphalerite. Journal of the Optical Society of America, v. 41, n. 6, p. 416-419, 1951.
DRIESSEN, ALBERTUS; LAMBECK, PAUL VINCENT; WORHOFF, KORNELIS. Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices. Journal of Lightwave Technology, v. 17, p. 1401-1407, 1999.
EL-SAYAD, ESSAM A. Compositional dependence of the optical properties of amorphous Sb2Se3-xSx thin films. Journal of Non-Crystalline Solids, v. 354, p. 3806-3811, 2008.
GASIOT, Jean; MANIFACIER, Jean Claude; FILLARD, Jean Pierre. A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. Journal of Physics E: Scientific Instruments, v. 9, p. 1002-1004, 1976.
HEAVENS, Oskar Sigmund. Optical properties of thin films. Reports on Progress in Physics, v. 23, n. 1, p. 1-65, 1960.
JOO, Heejung; CHO, Ming Young; KIM, Jin Hee; KIM, Sung Wook. The optical and structural properties of AlN thin films characterized by spectroscopic ellipsometry. Thin Solid Films, v. 368, n. 1, p. 67-73, 2000.
KADOSHIMA, Masaru; HIRATANI, Masahiko; SHIMAMOTO, Yasuhiro; TORII, Kazuyoshi; MIKI, Hiroshi; KIMURA, Shinichiro; NABATAME, Toshihide. Rutile-type TiO2 thin film for high-k gate insulator. Thin Solid Films, v. 424, p. 224-228, 2003.
MACHORRO, Raúl; SIQUEIROS, Jesús Manuel; REGALADO, Luis Enrique. Determination of the optical constants of MgF2 and ZnS from spectrophotometric measurements and the classical oscillator method. Applied Optics, v. 27, n. 12, p. 2549-2553, 1988.
MOAZZAMI, Kamran; PHILLIPS, Jamie; LEE, David; KRISHNAMURTHY, Shankar; BENOIT, Georges; FINK, Yoel; TIWALD, Thomas. Detailed study of above bandgap optical absorption in HgCdTe. Journal of Electronic Materials, v. 34, n. 6, p. 773-778, 2005
MOUSTAFA, Abdelrahman M.; EL-SAYAD, Essam A.; MARZOUK, Samir Y. Effect of heat treatment on the structural and optical properties of amorphous Sb2Se3 and Sb2Se2S thin films. Physica B, v. 404, p. 1119-1127, 2009 .
OPTICAL SOCIETY OF AMERICA. Handbook of Optics. McGraw-Hill, 2 ed., 1994.
SÁNCHEZ-GONZÁLEZ, J.; DÍAZ-PARRALEJO, A.; ORTIZ, A. L.; GUIBERTEAU, F. Determination of optical properties in nanostructured thin films using the Swanepoel method. Applied Surface Science, v. 252, p. 6013-6017, 2006.
PAZIM, Rafael Cardim. Caracterização óptica de filmes finos Homogêneos e Inomogêneos. Dissertação (Mestrado em Física) - Universidade Federal de Mato Grosso, 2011.
PELEGRINI, Marcus Vinícius. Estudo de materiais piezoelétricos da família III-IV obtidos por sputtering reativo visando sua aplicação em sensores e mems. 2010. Dissertação (Mestrado em Engenharia de Sistemas Eletrônicos) – Escola Politécnica, Departamento de Engenharia de Sistemas Eletrônicos, Universidade de São Paulo, São Paulo, 2010.
QUEIROZ, Jones Willian Soares de. Propriedades Químicas e Estruturais de Filmes Finos de a-SiC:H Depositados por PECVD. Dissertação (Mestrado em Física) - Universidade Federal de Mato Grosso, 2010.
SILVA, S.R.P., KHAN, R.U.A., BURDEN, A.P., ANGUITA, J.V., SHANNON, J.M., SEALY, B.J., PAPWORTH, A.J., KIELY, C.J., AMARATUNGA, G.A.J.. The microstructural dependence of the opto-electronic properties of nitrogenated hydrogenated amorphous carbon thin films. Thin Solid Films, v. 332, p. 118-123, 1998.
SWANEPOEL, Robert. Determination of thickness and optical constants of amorphous silicon. Journal of Physics E: Scientific Instruments, v. 16, p. 1214-1222, 1983.
SWAMINATHAN, Venkatesh; SUBRAMANIAN, Balaji; JAYACHANDRAN, Marimuthu. Micro-structural and optical properties of reactive magnetron sputtered aluminum nitride (AlN) nanostructured films. Current Applied Physics, v. 11, p. 43-49, 2011.
TAN, Chin Wen; MIAO, Jianmin. Optimization of sputtered Cr/Au thin film for diaphragm-based MEMS applications. Thin Solid Films, v. 517, p. 4921-4925, 2009.
TRIPATHI, Surya Kant; SHARMA, Indu; BARMAN, Partha Bir. An optical study of a-Ge20Se80-xInx thin films in sub-band gap region. Journal of Physics D: Applied Physics, v. 40, p. 4460-4465, 2007.
VERLEUR, Hans W. Determination of optical constants from reflectance or transmittance measurements on bulk crystals or thin films. Journal of the Optical Society of America, v. 58, n. 10, p. 1353-1364, 1968.
WEMPLE, Stephen H.; DIDOMENICO, Michael. Behaviour of the electronic dielectric constant in covalent and ionic materials. Physical Review B, v. 3, n. 4, p. 1338-1351, 1971.
WINTER, Charles H.; KUMAR, Pradeep; WIEDMANN, Monika K.; AVRUTSKY, Ivan. Optical properties of Al2O3 thin films grown by atomic layer deposition. Applied Optics, v. 48, n. 28, p. 5407-5412, 2009.
YOUSEF, El Sayed; SHAABAN, E. R.; ABDEL-RAHMAN, M. Compositional dependence of the optical properties of amorphous antimony selenide thin films using transmission measurements. Thin Solid Films, v. 515, p. 3810-3815, 2007.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rafael Cardim Pazim, Rogério Junqueira Prado
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
DECLARATION OF RESPONSIBILITY: I hereby certify that I partially or fully participated in the conception of the work, that I did not hide any links or financial agreements between the authors and companies that may be interested in this article publication. I certify that the text is original and that the work, partially or fully, or any other work with a substantially similar content written by me, was not sent to any other journal and it will not be send while my submission is being considered by Revista Educar Mais, whether in printed or electronic format.
The author responsible for the submission represents all the authors of the manuscript and, when sending the article to the journal, guarantees s/he has obtained the permission to do so, as well as s/he guarantees the article does not infringe upon anyone’s copyright nor violate any proprietary rights. The journal is not responsible for the opinions expressed.
Revista Educar Mais is Open Access, does not charge any fees, whether for submission or article processing. The journal adopts Budapest Open Access Initiative (BOAI)’s definition, i.e., any users are permitted to read, download, copy, distribute, print, search and link to the full texts of these articles.
All the articles are published under the Creative Commons Atribuição-NãoComercial 4.0 Internacional license. The authors keep the copyright of their production. That way, they must be contacted directly if there is any interest in commercial use of their work.