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ABSTRACT 

This paper investigates the refraction/reflection laws and the double slit interference pattern for particles. We 

used boundary conditions that consider the discrete and vibrant structure of the matter with which the particles 

interact, resulting in their scattering, enabling the use of the Huygens and Huygens-Fresnel principles for 

particles. We managed to obtain results that generalize Snell’s law, the reflection law and Young’s double slit 

pattern, for regions very close to the refraction/reflection interface and the slits. The choice made of the 

scattering used, seems to be the key for a mechanical explanation of light and Young’s double slit pattern, 

including the case of the particles passing through the slit one at a time, therefore, it challenges the validity of 

the Niels Bohr’s complementarity principle and might be the missing link that reconnects without hierarchies 

both Classical Mechanics and Quantum Mechanics. 

Keywords: Huygens-Fresnel Principle; Refraction; Young’s double slit pattern; Snell’s law; Complementarity 

Principle. 

RESUMO 

Nesse trabalho investigamos as leis da refração/reflexão e o padrão de interferência em fenda dupla para 

partículas. Usamos condições de contorno que consideram a estrutura discreta e vibrante da matéria com a 

qual as partículas interagem, resultando num espalhamento destas que possibilita o uso dos princípios de 

Huygens e de Huygens-Fresnel para as partículas. Conseguimos obter resultados que generalizam a lei de Snell, 

alei da reflexão e o padrão de Young da fenda dupla, para regiões muito próximas da interface 

refratora/refletora e das fendas. A escolha feita para o potencial de espalhamento utilizado, parece servir de 

chave para uma explicação mecânica da luz e o padrão de Young da fenda dupla, inclusive no caso da passagem 

de uma partícula de cada vez pelas fendas, por isso coloca em xeque a validade do princípio da 

complementariedade de Niels Bohr e pode ser o elo perdido que reconecta sem hierarquias a Mecânica Clássica 

e a Mecânica Quântica. 

Palavras-chave: Princípio de Huygens-Fresnel; refração; padrão de Young da fenda dupla; lei de Snell; 

princípio da complementariedade. 
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RESUMEN 

En este trabajo investigamos las leyes de refracción / reflexión y el patrón de interferencia de doble rendija 

para partículas. Utilizamos condiciones de contorno que consideran la estructura discreta y vibrante de la 

materia con la que interactúan las partículas, lo que resulta en una dispersión de estas que permite el uso de 

los principios de Huygens y Huygens-Fresnel para las partículas. Pudimos obtener resultados que generalizan 

la ley de Snell, la ley de reflexión y el patrón de Young de la doble rendija, para regiones muy cercanas a la 

interfaz refractora/reflectora y las rendijas. La elección realizada por el potencial de dispersión utilizado parece 

servir como clave para una explicación mecánica de la luz y el patrón de Young de la doble rendija, incluso en 

el caso de pasar una partícula a cada vez por las rendijas, por lo que pone en jaque la validez del principio de 

complementariedad de Niels Bohr y puede ser el eslabón perdido que reconecta la Mecánica Clásica y la 

Mecánica Cuántica sin jerarquías. 

Palabras clave: Principio de Huygens-Fresnel; Refracción; Modelo joven de la doble rendija; La ley de Snell; 

Principio de complementariedad. 

 

1.  INTRODUCTION 

Optics phenomena have been studied by physicists for many centuries based on different concepts 

of the nature of light. The British physicist Isaac Newton (Newton, 1643) (1643-1727), in his annus 

mirabilis proposed that light should be made of particles. The Dutch physicist and mathematician 

Christian Huygens (1629-1695), in turn, imagined light as made of waves, and that collisions between 

the ether corpuscles, similar to air molecules, would transmit changes to their neighbourhood 

propagating light. Based on such ideas, Huygens formulated a principle for the propagation of these 

waves, currently known as Huygens Principle. Using this principle, Huygens was able to explain the 

phenomenon of light propagation in a straight line, its reflection and refraction. The French physicist 

Augustin-Jean Fresnel (1788-1827) presented a mathematical expression for the Huygens Principle 

for monochromatic waves using spherical waves overlapping. Fresnel’s work resulted in a new 

principle called Huygens-Fresnel Principle, which also explained interference phenomena. The English 

physician and physicist Thomas Young (1773-1829), considered by many the first scientist to carry 

out double slit experiments, brought about a demand for the understanding of light that is still rooted 

in physics. Thomas Young’s double slit interference pattern could only be explained up to now by 

admitting light as a wave. The British physicist James Clerk Maxwell (1831-1879), when manipulating 

the laws of electromagnetism for electrical and magnetic fields, noticed that they respected a wave 

equation whose propagation speed would be equal to the speed of light. Maxwell’s study results 

enable the recognition of light as a transversal wave, made of electrical and magnetic fields, that is, 

an electromagnetic wave. From Maxwell’s work onwards, the optics and electromagnetism areas were 

joined, which made it possible to explore theoretically other phenomena such as polarization and light 

emission by accelerated electrical charges. The German physicist Max Planck (1858-1947), considered 

the father of Quantum Physics, suggested that electromagnetic waves should be quantized to create 

an explanation for the black body radiation emission spectrum. Another German physicist, Albert 

Einstein (1879-1955), based on Planck’s theory, reinforced the understanding that light should be 

made of particles and proposed the existence of photons to explain the photoelectrical phenomenon. 

The photon was a special particle whose energy would be linked to an exclusive characteristic of 

waves that would be its frequency. The Danish physicist Niels Bohr (1855-1962) proposed a model 
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of atom and presented a way to produce photons, through electronic transitions, that is, one electron 

when “jumping” from an orbital to another would be liable to the emission or absorption of a photon 

whose energy would be exactly the energy difference between the orbitals. After the works by Planck 

and Einstein, the French physicist Louis De Broglie (1892-1987) associated a wavelength to the 

momentum of a particle and the photon would become a particle characterized by the same 

parameters as those of a wave. With an experimental work that agreed with the De Broglie’ theory, 

Davison and Germer in their 1927 work on the diffraction of electrons in nickel crystal, contributed to 

the appearance of the wave-particle duality and a new conception of Quantum Mechanics, involving 

physicists as Werner Heisenberg (1901-1976), Ervin Schödinger (1887 -1961), Paul Dirac (1902-

1984) among others. After a turbulent period regarding the interpretation of experimental results, 

the Copenhagen Interpretation, as it is known, was considered hegemonic and still holds as an 

important reference professor Richard Feynman’s (1918-1988) point of view related to the Thomas 

Young’s double slit interference pattern, published in the collection “Lectures Feynman”. In that 

context, professor Feynman suggested a mental experiment in which a machine gun would shoot 

indestructible bullets in random directions towards a metal plate with two holes that were large 

enough to let the bullets go through them. Then, the bullets might collide or not with the walls of the 

holes and travel up to a screen where they are counted and show a larger number of bullets 

concentrated on two positions just behind the two holes. Since this pattern is not the T. Young’s 

interference pattern, Feynman suggested that:   

“...it is impossible, absolutely impossible, to be explained in any classical way, and which 

has in it the heart of quantum mechanics. In reality, it contains the only mystery.” 

Since then some experimental works use that assertive as a criterion to decide whether something 

behaves like a wave or like a particle, if the interference pattern occurs, it is considered a wave 

behavior, if not, it is a particle like behavior. Before professor Feynman, Niels Bohr had added the 

principle of complementarity to the wave-particle duality, according to which the two behaviour 

patterns cannot be exhibited at the same time, but not for being contradictory, since they are 

complementary.  

In this study, we investigated the refraction/reflection and double slit interference phenomena, which 

are the optics conceptual base. The interference phenomenon in the double slit problem was 

analyzed, in which we built up an alternative to professor Feynman’s reasoning based on the Huygens’ 

and the Huygens-Fresnel Principles and showed that they are fundamental to explain 

reflection/refraction and interference phenomena. For our reasoning, we put ourselves in the place 

of a photon or electron and then asked: What, in that case, we could understand as a double slit? 

Unlike the bullets colliding with continuous and smooth walls and rebounding when touching them, 

we noticed that a photon or electron would realize the complexity of the network of atoms that 

constituted the slit walls. Many atoms in thermal movement, with moving electrons, resulting in 

electromagnetic fields changing with time, everything in the two walls of a slit, which are too close 

to allow the interaction with the incident particles going through them to be sufficiently intense. In 

addition to taking into consideration the details in this interaction with the slit walls, composed of 

scattering centers in discrete positions, we also observed the requirements of the incident beam 

organization details, from which at least spatial coherence is required, that is, that the incident 

particles be disposed in parallel planes to the plane of the wall that contains the slits, separated one 

from another by the same length, similar to the wavelength of a monochrome wave.     
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Such reasoning allowed us to access more intuitively the problems analyzed and we found 

mathematical solutions in smaller dimensions than those we are used to, one example is the double 

slit case in which we obtained the behaviour of the particle beams too close to the slits, so close that 

the traditional approximation of two straight angles in a right triangle does not apply. All this should 

also apply to waves, up to the validity of the principles and hypotheses that we follow. In another 

example, we found out that the refraction/reflection phenomenon is also described by the same 

interference phenomenon, generated by the overlap of spherical waves created in the particle 

scattering of refraction/reflection interfaces.   

2. MATHEMATICAL ASPECTS - APPLICATIONS 

Our first hypothesis considers that: In the huge number of atoms of the material of which a 

macroscopic interface is made, even if millimetric, there is a huge number of electrons in constant 

movement. The electromagnetic field in a certain position is generated by a large number of interface 

charges, these charges are under the influence of the random nature of thermal effects and a photon 

or electron in that position must be scattered in random directions, in the sense that we do not know 

the scattering potential that acts on the particle at a given instant in time.  

In his book called “Optics” Eugene Hecht explains that: 

“Generally, we can imagine that in a medium illuminated by an ordinary beam of light; 

each atom behaves as though it was a “source” of a tremendous number of photons 
(scattered either elastically or resonantly) that fly off in all directions. A stream of 

energy like this resembles a classical spherical wave. Thus we imagine an atom (even 

though it is simplistic to do so) as a point source of spherical electromagnetic waves 
– provided we keep in mind Einstein’s admonition that the "outgoing radiation in the 

form of spherical waves does not exist. When a given material with no resonances in 
the visible is bathed in light, nonresonant dispersion occurs, and it gives each 

participant atom the appearance of being a tiny source of spherical wavelets”.  

Despite Einstein’s warning regarding electrical and magnetic aspects of light, we can think about 

spherical waves for the location of photons as being a region similar to a spherical shell (spherical 

surface), where the likelihood to find these photons is different from zero, it dislocates with time and 

the particle speed. 

 The second hypothesis that is the invariance of the kinetic energy of scattered particles, which was 

already reported by Davison and Germer in 1927, more specifically in the summary of the work on 

their electron diffraction experiment. 

“The distribution in latitude and azimuth has been determined for such scattered 

electrons as have lost little or none of their incident energy”. 
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3. ANALYSIS OF PARTICULAR CASES 

3.1 REFRACTION/REFLECTION 

We initially observed that, since we are using the Huygens-Fresnel Principle2, the results obtained 

should recover those known for plane waves, obviously, in the limit where the spherical waves have 

a large enough radius. However, it seems relevant to emphasize that, due to the random character 

of the location of a particle, as shown in Figure 1, and due to the kinetic energy of that particle being 

constant after it was scattered, our reasoning ascribes a meaning to the spherical wavefront, which 

is “the region of no null probability of finding the particle”, a moving spherical surface that increases 

its radius with the same speed as the particle. When several particles are scattered at the same time 

by the same center, this “wave” front would be full of particles and would be a Huygens’s secondary 

wavefront3.  

 
Figure 1 – Scheme of a particle scattering, yellow ellipses show some of the possible locations of the incident 
particle depicted by the blue ellipse. The brown circles represent the interface scattering centers, after the time 
interval ∆𝑡 , the probability region different from zero of finding the particle is represented by the green 

circumference.  

To examine the refraction/reflection phenomenon we will consider a front made of several particles 

on a plane, this front moves in the normal direction towards the particle plane and will focus on an 

interface of separation between two dielectric media, located on the vertical axis. Each scattering 

center of that interface will be responsible for the scattering of a large number of particles at the 

same time. Figure 2 shows some instants of the evolution of a single particle source, it focuses on 

the interface of separation between two media (1 and 2), and the incident front is represented by 

the red dotted line which focuses on an incidence angle with the interface. We considered that 

scattered front on three distinct scattering center, represented by the orange circle in the vertical 

axis. This is a problem that might be solved in two dimensions and the “spherical” fronts are 

circumferences in the page plane that evolve and intersect. We will see that this is one of the most 

important facts in this study, the overlap! 

 
2 [HEC02, p. 444] 
3 [HUY90, p. 22] 
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Figure 2 – In (a) a red dotted line dislocates to the right, at a given angle with the horizontal axis and 

represents the particle front. In (b) the particle front has already touched the interface, in the position of the 
first scattering center (●) at the origin and a little later, it also touched the second scattering center on the 

vertical axis, we also have the two wavefronts and the corresponding circular secondary waves. In (c) and (d) 

these secondary wavefronts evolve and in (d) they already intersect. 

In Huygens Principle, the main wavefront, resulting from the scattering of the three centers shown 

in Figure 2-d, would be the straight line tangent to the three circumferences. According to the 

Huygens-Fresnel Principle, at each point in space, we would have to calculate the interference of 

these three waves and for that, in this study, it makes sense to concern with the intersection points 

only, since at them, we have a single instant in time, that is, twice the probability of finding a particle, 

and therefore, there is a maximum of interference. In those maxima, the probability intensity, that 

is, the probability per area unit and per time unit, ends up as the probability per volume unit, or 

probability density. 

It seems relevant to observe that the in the scattering of a front with many particles, over a single 

scattering center, the particles are distributed over the space in a radial fashion. However, the more 

scattering centers exist, the more intersections occur and the maxima of interference are the groups 

of particles. Such intersections are the most intense part of the scattered particle field, these maxima 

are observed as particle beams and they define the beam propagation direction.  

Let’s then analyze mathematically the evolution of these maxima of interference on the right hand of 

the interface, for that purpose, we need the information in Figure 3, there, we see the three time 

instants being considered and when a particle front touches the scattering centers:  
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Figure 3 – Scheme representing the formation of three spherical regions (in two dimensions) and their 
intersections or maxima of interference. The 𝑦 axis represents the separation interface between the two media 

(1 and 2), the black circles (●) used to study the maxima are indicated by the points (𝑥1, 𝑦1) and (𝑥2, 𝑦2). 

First, let’s find the position of the maxima, we observed the overlap of two circumferences and these 

positions are simultaneous solutions for two equations of the circumferences, the first maximum 

occurs between the first circumference, 𝑅1 radius, and the second 𝑅2 radius, the second maximum 

occurs between the circumference of 𝑅2 radius and the one of 𝑅3 radius. To obtain the relation 

between these radii, given in equation (1) we must observe that: 

On the left hand of the  𝑦 axis (medium 1) the velocity of propagation is shown as 𝑣1 and on the 

right hand (medium 2) as 𝑣2. Therefore, in a time interval ∆𝑡, the plane wavefront, on the left hand, 

will dislocate from 𝐿, while the secondary wave, on the right hand, will dislocate from 𝐿′. The colored 

circumferences represent secondary waves generated by the contact of the incident wave with the 

media separation surface. At the position 𝑦01 , the first contact occurred, at 𝑦02, the second, after ∆𝑡, 

and at 𝑦03 , and the third, after 2∆𝑡.  

In the ∆𝑡 interval, the first secondary wave travels at a distance 𝑅1, of the medium 2, with modulus 

velocity 𝑣2. Concerning the plane wave second front, which originates the secondary wave, it travels 

in medium 1 with modulus velocity 𝑣1, in the interval ∆𝑡1 =
𝐿

𝑣1
, and afterwards in medium 2 with 

modulus velocity 𝑣2, in the interval ∆𝑡2, requiring  ∆𝑡1 + ∆𝑡2 = ∆𝑡. By analyzing the scheme presented 

in Figure 1, we could observe that all the other radii 𝑅𝑛 are written as a function of 𝑅1 that changes 

with time, that is: 

𝑅𝑛 = 𝑅1 −
(𝑛−1)𝑣2𝐿

𝑣1
           ,                                            (1) 

where 𝑅1 = 𝑣2∆𝑡  e  𝑛 = 1,2,… designates the secondary wave; observe that 
𝑣2𝐿

𝑣1
= 𝐿′. 
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We could verify that the coordinates (𝑥, 𝑦) of a maximum, between two neighboring circumferences 

𝑛 and 𝑛 + 1, satisfy simultaneously the two circumference equations, one of radius 𝑅𝑛 and another 

of radius 𝑅𝑛+1.  

For the first maximum, the equations of the circumferences that these radii must satisfy at the same 

time are, the first (bottom), 

𝑥2 + (𝑦 − 𝑦01)
2 = 𝑅1

2            ,                                               (2) 

and the second (top), 

𝑥2 + (𝑦 − 𝑦02)
2 = 𝑅2

2                                               (3) 

 

By equalling the coordinate 𝑥, that is the same for both circumferences, we obtained the coordinate 

𝑦 of the first maximum, 𝑦1,2 : 

 

𝑦1,2 =
𝑅1
2−𝑅2

2−𝑦01
2 +𝑦02

2

2(𝑦02−𝑦01)
=

𝑅1
2−𝑅2

2+𝐴2

2𝐴
                                       (4) 

where, 𝑦02 − 𝑦01 = √𝐿2 + 𝐷2 = 𝐴. 

With that, equation (2) gives us the coordinate 𝑥1,2:   

𝑥1,2 = √𝑅1
2 − (𝑦1,2 − 𝑦01)²                                            (5) 

Likewise, for the second maximum of Figure 3, we have: 

𝑦2,3 =
𝑅2
2−𝑅3

2−𝑦02
2 +𝑦03

2

2𝐴
=

𝑅2
2−𝑅3

2+4𝐴2

2𝐴
        ,                             (6) 

𝑥2,3 = √𝑅2
2 − (𝑦2,3 − 𝑦02)²           .                                (7) 

 

Similar reasoning takes us to the second pair (𝑥2,3, 𝑦2,3 and we can generalize these results for the 

general case:  

𝑦𝑛,𝑛+1 =
𝑅𝑛
2−𝑅(𝑛+1)

2 −𝑦0𝑛
2 +𝑦0(𝑛+1)

2

2(𝑦0(𝑛+1)−𝑦0𝑛)
        ,                                (8) 

𝑥𝑛,𝑛+1 = √𝑅𝑛
2 − (𝑦𝑛,𝑛+1 − 𝑦0𝑛)²         .                            (9) 

Figure 4 shows the result of a simulation of the evolution of the maxima of interference as a function 

of time, a pair of coordinates (𝑥, 𝑦) for each time value,  the values of the variables involved were: 

𝑣1 = 0,4 , 𝑣2 = 0,3 , 𝜃1 = 12, 4𝑜 , 𝑦01 = 0, 𝑦02 = 2,79 , 𝑦03 = 5,59, 𝐿 = 0,6, 𝐴 = 1,97, ∆𝑡 = 0,1.  
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Figure 4 – Sequence of maxima formed by the particle scattering in the two scattering centers 
represented by the orange circles in the vertical axis.   

A time interval between the arrival of the incident particle front and the appearance of the first 

maximum is observed in Figure 4, that is, the beam of maximums starts to exist from a minimum 

distance of the interface. In this case, the secondary wavefronts have not intersected yet. It is also 

interesting to observe that this situation will occur when we have 𝑣1 < 𝑣2 and an incidence angle 

larger than the critical angle, in which the diffracted beam no longer exists, making it geometrically 

impossible for the secondary wavefront to intersect, photons exist on the right hand of the interface, 

but they do not group.  

We take advantage of this context to examine the curve of the curvature of the beam of maximums 

close to the interface, since, could we see a curve trajectory for a light beam? According to our model, 

the light beam bends, but that does not mean that the photons follow the same curve trajectory! 

After all, a maximum is build up by the geometrical coincidence of photons that move in a straight 

line from each scattering center, they meet at a maximum position and later on move away from the 

maxima trajectory.    

Now we can investigate the refraction phenomenon, the deviation suffered by an incident beam, 

when going through an interface that separates two media, with different refraction indices. We 

obtain the direction of propagation of the beam particles, by the direction of “propagation” of the 

interference maxima and bear in mind that the refraction law is Snell’s law: 

𝑠𝑒𝑛𝜃1

𝑣1
=

𝑠𝑒𝑛𝜃2

𝑣2
   ,                                               (10) 
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In Figure 3, we see that 𝑣1 is the velocity of the particle front in the medium 1, 𝑣2 is the velocity of 

the “spherical” wavefront in the medium 2, 𝜃1 is the incidence angle and 𝜃2 is the refraction angle. 

Also, based on Figure 3, we find the two sides of equation (8), the left hand is obtained directly,  

𝑣1𝑠𝑒𝑛𝜃1 = 𝑣1
𝐿

𝐴
                  ,                            (11) 

while the right hand is obtained from the inclination of the segment of the straight line that united 

the two maxima: 

𝑠𝑒𝑛𝜃2 =
(𝑥1,2−𝑥2,3)

√(𝑦1,2−𝑦2,3)²+(𝑥1,2−𝑥2,3)²
=

∆𝑥

√(∆𝑦)²+(∆𝑥)²
        .             (12) 

 

The ∆𝑦 calculation is simpler and results in: 

∆𝑦 = 𝑦2,3 − 𝑦1,2 =
(
𝑣2𝐿

𝑣1
)
2
−𝐴2

𝐴
                                               (13) 

The ∆𝑥 calculation, carried out in the Appendix, involves a subtraction of square roots and is a little 

more complicated. The sequence of maxima in Figure 4 shows that the refraction angle changes close 

to the interface between the media, that is, the value of 𝑠𝑒𝑛𝜃2 given by the equation (12) does not 

satisfy Snell’s law, which admits a single refraction angle 𝜃2. However, equation (12) recovers Snell’s 

law at the limit in which we can consider 𝑅1 = 𝑣2∆𝑡 large enough, in this case, for ∆𝑥 we have: 

∆𝑥 = |𝑥1,2 − 𝑥2,3| =
𝑣2

𝑣1
𝐿
√𝐴2−(

𝑣2𝐿

𝑣1
)
2

𝐴
        .                          (14) 

Then, far from the interface we have:  

𝑠𝑒𝑛𝜃2 =

𝑣2
𝑣1
𝐿

√𝐴2−(
𝑣2𝐿
𝑣1

)
2

𝐴

√
  
  
  
  
 
 

[
(
𝑣2𝐿
𝑣1

)
2
−𝐴2

𝐴
]

2

+

[
 
 
 
 
−𝑣2
𝑣1

𝐿

√𝐴2−(
𝑣2𝐿
𝑣1

)
2

𝐴

]
 
 
 
 
2
          ,                        (15) 

That is, with a little manipulation, we find the asymptotic expression of Equation (12) as: 

𝑠𝑒𝑛𝜃2 =
𝑣2

𝑣1

𝐿

𝐴
=

𝑣2𝑠𝑒𝑛𝜃1

𝑣1
                  ,                         (16) 

which is the Snell’s law given by Equation (10).   

As for the reflection, we must consider that the coordinate 𝑥 of points (𝑥1,2, 𝑦1,2) and (𝑥2,3, 𝑦2,3) in 

Figure 3 must be transformed into −𝑥 and also that 𝑣1 = 𝑣2, with that, Equation (16) requires  𝜃2 =

𝜃1 since these angles are restricted to the interval (
−𝜋

2
,
𝜋

2
). 
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3.2 INTERFERENCE – APPLICATION TO THE DOUBLE SLIT PROBLEM  

We will analyze the double slit device, assuming an incident particle front boundary condition as plane 

and monochromatic and showing length 𝜆 between the particle front. When the first particle front 

depicted as 𝐹1 (Figure 5), which is simultaneously incident upon the slits (normal incidence), two 

secondary waves 𝑓1
1 and 𝑓1

2 emerge, which are arcs of a circumference with a single intersection 

point (central maximum). However, when the second wavefront, 𝐹2, is considered, which produces 

other two secondary wavefronts 𝑓2
1 and 𝑓2

2, intersection points with the first secondary waves will 

also exist, and such points are the secondary interference maxima. 

 
Figure 5 - Incident wavefront 𝐹1, 𝐹2, 𝐹3, 𝐹4and four secondary waves 𝑓1

1, 𝑓2
1, 𝑓3

1, 𝑓4
1 generated by the top slit (▪) 

and 𝑓1
2, 𝑓2

2, 𝑓3
2, 𝑓4

2 by the bottom slit (▪), maxima (●) are also shown. 

Mathematically, we can think about two incident plane wavefront, separated by 𝜆 , producing 

secondary wavefronts separated by 𝜆, since we have the same propagation velocity before and after 

the slits. Thus a secondary wavefront with radius 𝑅 can be used as a reference for the radius of the 

umpteenth secondary wavefront with radius 𝑅𝑛 = 𝑅 + 𝑛𝜆, with 𝑛 = 0,1,2….  

Assuming that the slits are located on the 𝑦 axis, in the positions 𝑦01 = 0 and 𝑦02 ≠ 0,  the equations 

of the circumferences, which represent secondary waves from slit 2 and slit 1 (Figure 5), will be: 

𝑥2
2 + (𝑦2 − 𝑦02)

2 = (𝑅 + 𝑛2𝜆)²       ,                             (17) 

 

𝑥1
2 + 𝑦1

2 = (𝑅 + 𝑛1𝜆)²          ,                              (18) 

where 𝑛1,2 = 0,1,2,3… represent the indices of the secondary waves generated by slit 1 located in  

𝑦01, and by slit 2, located in 𝑦02. 

In the intersection of these two circumferences, we have 𝑥1 = 𝑥2 = 𝑥  and  𝑦1 = 𝑦2 = 𝑦, so that, by 

solving the system of equations (17) and (18), we obtain the maxima coordinates: 

     𝑦 =
𝑦02
2 +(𝑅+𝑛1𝜆)

2−(𝑅+𝑛2𝜆)
2

2𝑦02
          ,                         (19) 
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and, 

𝑥 = √(𝑅 + 𝑛1𝜆)
2 − 𝑦² .                                       (20) 

The coordinates of the maxima are found as a function of integer numbers 𝑛1 and 𝑛2. For example, 

the central maxima appear in  𝑛1 = 0 and 𝑛2 = 0, that is, in  𝑥 = √𝑅2 −
𝑦02

2

4
∧ 𝑦 =

𝑦02

2
, and,  for each 

𝑅 value, there is a central crossing.          

At this point, we could observe that when considering only two scattering centers, equations (8) and 

(9) with 𝑣1 = 𝑣2 e 𝜃1 = 0 would give us the central maximum coordinates, that is, the phenomenon 

that occurs at the double slit is the same that occurs in the refraction, interference!                                       

To observe the behavior of secondary waves and maxima, we created a simulation in which four 

secondary waves were generated to each slit, with radii 𝑅𝑖 = 𝑅 + 𝑖𝜆 (𝑖 = 0,1,2,3), in which we could 

vary 𝑅, as shown in Figure 5. The intersection point coordinates were also calculated, given by 

equations (19) and (20), for different values of 𝑛1and 𝑛2. When 𝑅 varies, we have the maxima 

behavior in any desired position, that is, close to the slits or far from them. 

Figure 5 shows the existence of points 𝑥(𝑛1, 𝑛2) and 𝑦(𝑛1, 𝑛2) which are part of the same straight line 

or maxima sequence. Two examples of maxima beams are shown by the dotted lines. The values 

used for the distance between the slits 𝑦02 and for 𝜆 were 𝑦02 = 5,7 and 𝜆 = 1,1. 

Equations (19) and (20) with 𝑛2 = 𝑛1 +𝑚 can be used to obtain the points that make up the same 

maxima sequence, that is:  

 𝑦𝑛1,𝑚(𝑅) =
𝑦02

2
−

𝑚𝜆[𝑚𝜆+2(𝑅+𝑛1𝜆)]

2𝑦02
                                (21) 

𝑥𝑛1,𝑚(𝑅) = √(𝑅 + 𝑛1𝜆)
2 − (𝑦𝑛1,𝑚)²                           (22) 

The values of 𝑛1  and 𝑛2  characterize a maximum and are separated by 𝑚, that is, for a given 

maximum, the two secondary waves that make it up show indices separated by 𝑚, and then, all the 

subsequent maxima, due to the secondary waves separated by the same 𝑚, will be part of the same 

sequence. Thus we concluded that for 𝑚 = −1 we have the maxima (𝑛1, 𝑛1 − 1) that can take the 

values (1,0), (2,1), (3,2)… 

The 𝑠𝑒𝑛𝜃 of each sequence (Figure 5) can be calculated by: 

𝑠𝑒𝑛𝜃 =
∆𝑦

√∆𝑥²+∆𝑦²
            .                            (23) 

Away from the slits, in neighboring secondary wavefronts, that is, the closest possible, √∆𝑥² + ∆𝑦² =

𝜆𝑁 ≈ 𝜆. So that, we have:  

𝑠𝑒𝑛𝜃 =
𝑦𝑛1,𝑚−𝑦(𝑛1+1),𝑚

𝜆
         .                                (24) 
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By using 𝑦02 = 𝑑 in equation (21) we obtained  ∆𝑦 = 𝑦𝑛1,𝑚−𝑦(𝑛1+1),𝑚 =
𝑚𝜆2

𝑑
  and, finally, we obtained 

the famous equation that depicts Thomas Young’s double slit interference pattern: 

𝑑𝑠𝑒𝑛𝜃 = 𝑚𝜆      .                                       (25) 

Similarly to the case of the critical angle in refraction, in the double slit there is a limit to be respected 

so that the secondary maxima exist, which is 𝜆 < 𝑑. Figure 6 shows the case in which 𝜆 = 𝑑 = 𝜆𝑐 and 

there is only a central maximum. 

 
Figure 6 – Similar case to that in Figure 5, in which 𝜆 = 𝑑 = 𝜆𝑐 , only the central maximum is possible. 

4. ANALYSIS OF SECONDARY WAVEFRONT OVERLAPPING 

Now, we can analyze in more detail the secondary wavefront overlapping, let’s use the example of 

overlap of the two secondary waves, Figure 7, and observe the intensity of the probability density, or 

particles that reach a certain point. 
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Figure 7 – Double slit scheme for the analysis of the interference maxima intensity, two “spherical” wasvefronts 

are represented, the maximum intensity value is found exactly where they intersect and it extends to both 
sides, reducing ∆𝐿 and intensity.  

Let’s say that a number 𝑁0  of particles reach a slit, then the particle density on half of the 

circumference of the radius 𝑅 + 𝑛𝑖𝜆, emitted by that slit is given by:   

𝜌𝑖(𝑥, 𝑦) =
𝑁0

𝜋(𝑅+𝑛𝑖𝜆)
         ,                                    (26) 

we should bear in mind that 𝑛𝑖 = 0,1,2… designating the secondary wavefront “generated” by one of 

the slits. 

Therefore, the number of particles contained in an angle interval ∆𝜃 observed from the mean distance 

between the slits is given by: 

𝑁𝑖,𝑗 = 𝜌𝑖(𝑥, 𝑦)(𝑅 + 𝑛𝑖𝜆)∆𝜃       ,                           (27) 

where 𝑗 = 1,2  defines the slits, in which 1 is the bottom one and 2 is the top one, 𝑖 = 1,2… 

designating the wavefront emitted by slit j. 

𝑁𝑖,1 +𝑁𝑖,2 = [𝜌1(𝑥, 𝑦)(𝑅 + 𝑛1𝜆)∆𝜃 + 𝜌2(𝑥, 𝑦)(𝑅 + 𝑛2𝜆)∆𝜃]  .    (28) 

Now we can analyze the intensity of the particles that reach ∆𝜃 in a time interval ∆𝑡, that is: 

𝐼 =
𝑁

(𝑅+𝑛𝑖𝜆)∆𝜃∆𝑡
               ,                                   29) 

where (𝑅 + 𝑛𝑖𝜆)∆𝜃 corresponds to the “area” element contained in ∆𝜃. Observing that the particle 

velocity is 𝑣 and that ∆𝑡 =
∆𝐿

𝑣
 we substitute (28) with (29) and obtain, 

𝐼 =
𝑣

∆𝐿
[
𝑁0(𝑅+𝑛1𝜆)

𝜋(𝑅+𝑛1𝜆)
2
+

𝑁0(𝑅+𝑛2𝜆)

𝜋(𝑅+𝑛2𝜆)
2
]          .                  (30) 

Then, we have to find ∆𝐿 to obtain 𝐼, in Figure 7, we notice that: 

∆𝐿 = √(𝑋 − 𝑥)2 + (𝑌 − 𝑦)2       .                        (31) 

However, this amount in the exact position of the intensity maximum becomes null making the 

intensity infinite, this occurs because up to this point we have not ascribed our particles any size, 

thus, in order to be more realistic in our analysis, we will ascribe the same diameter 𝛿 to our particles 

and with that, equation (31) becomes:  

∆𝐿 = √(𝑋 − 𝑥)2 + (𝑌 − 𝑦)2 + 𝛿      ,                 (32) 

That is, exactly in the position that locates an intensity maximum ∆𝐿 = 𝛿. To calculate ∆𝐿 , we must 

remember that the circumference equations are: 

𝑥2 + (𝑦 − 𝑦02)
2 = (𝑅 + 𝑛1𝜆)²             ,             (33) 
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𝑋2 + 𝑌2 = (𝑅 + 𝑛2𝜆)²                .                  (34)     

When choosing a 𝑦 value as in Figure 7, the corresponding 𝑥 value is given by, 

𝑥 = √(𝑅 + 𝑛1𝜆)
2 − (𝑦 − 𝑦02)

2            ,                     (35) 

the 𝑌 value can be found for the linear relation between the points (𝑥, 𝑦)and (𝑋, 𝑌), that is: 

𝑌

𝑋
=

𝑦

𝑥
             ,                                            (36) 

So, with (34) and (36) we obtain,  

𝑌 =
(𝑅+𝑛2𝜆)(𝑦 𝑥⁄ )

√1+(𝑦 𝑥⁄ )2
          ,                                   (37) 

which substituted in (34) gives us the expression for 𝑋: 

𝑋 =
(𝑅+𝑛2𝜆)

√1+(𝑦 𝑥⁄ )2
                                                    (38) 

Finally, we obtain ∆𝐿(𝑦), 

∆𝐿 = √(
𝑅+𝑛2𝜆

√1+(𝑦 𝑥⁄ )2
− √(𝑅 + 𝑛1𝜆)

2 − (𝑦 − 𝑦02)
2)

2

+ (
(𝑅+𝑛2𝜆)𝑦 𝑥⁄

√1+(𝑦 𝑥⁄ )2
− 𝑦)

2

+ 𝛿         (39) 

And also the 𝐼 intensity: 

𝐼(𝑦) =
𝑣[

𝑁0
𝜋(𝑅+𝑛1𝜆)

+
𝑁0

𝜋(𝑅+𝑛2𝜆)
]

∆𝐿
                                       (40) 

The 𝐼(𝑦) function, for the five maxima 𝑚 = 0,±1,±2, is shown in Figure 8 for the values  𝑅 = 115,50 

, 𝜆 = 0,5 , 𝑑 = 𝑦02 = 1 , 𝑁0 = 2 , and 𝑣 = 0,3. The different color points represent the maxima exact 

position were necessary to be included to locate the limit that the different color curves should reach, 

since 𝑦 not always increase, in this case equal to 0.5, close to a maximum, captures that limit.  
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Figure 8 – Five 𝐼(𝑦)   different color curves for the five maxima given by the pairs (𝑛1, 𝑛2) =
(0,0), (1,0), (0,1), (2,0), (0,2), the maxima in this case occur exactly in the traditional positions.  

We could also notice that there is an overlap of maxima, when Figure 9 is analyzed, we see that a 

secondary wavefront might belong to more than a maximum, for example, the photons of a maximum 

that are the last to reach a certain position, will be the first photons of another maximum. Figure 9 

shows the photons in the blue line between the red and green regions. 

 
Figure 9 – Common region to the two maxima represented by the colors red and green. 

The sum of intensities in Figure 8 is shown in Figure 10. 
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Figure 10 – The dashed line represents the sum of intensities of the two slits. 

 

5. CASE DISCUSSION: PARTICLE ONE TO ONE 

As we have already mentioned, the particles reach the slits in a straight line, they are deviated by the 

slits and then travel again in a straight line as free particles. In Figure 11, we depict three situations 

in which only two particles reach the slits, a slightly intense beam, which might represent the 

occurrence of a central maximum with 𝑚 = 0 , and two secondary maxima with 𝑚 = −1 and 𝑚 = 1. 

In the first situation, the two particles reach the two slits at the same time, one at each slit, then, 

they meet at the only point possible at the backstop, the only place where the two ways have the 

same length, which is at the central maximum. Bellow, in Figure 11, the other two possibilities for the 

first secondary maximum are represented, the two particles reach the slits at the same time, but, 

separated by a distance 𝜆, in this case, a possible meeting at the backstop can only occur in the 

secondary maximum m=-1 and m=+1.  
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Figure 11 – Pulse made of 2 particles represented by the blue circles and the three possibilities of them 

constituting a maximum. 

In the case of a single particle going through the slits at each time, the central maximum cannot 

occur, this would then be the criterion to state that one particle at a time is going through the slits.  

6. RESULT ANALYSIS 

We found a way to apply the Huygens and Huygens-Fresnel Principles to particle scattering, by 

suggesting, respectively, the “random” particle scattering and an interference maximum where these 

particles group. With these hypotheses, we examined the cases of particles organized in an incident 

beam on a refracting/reflecting interface, constituted by scattering centers discretely organized in 

space, as a result, we recovered Snell’s law and showed that it is not obeyed very close to the 

interface, and that the maxima follow the directions given by equations (8) and (9). We also examined 

the incidence of organized beams on a double slit, as a result, we recovered Young’s pattern and 

showed that it is not followed very close to the slits, the beams that emerge from the interface or 

from the slits, seem to originate from a point that is at a certain distance from them. The explanation 

is that the secondary waves, which originate from scattering centers distant one from another, only 

intersect after they have travelled a certain distance. Far from the scattering center, the absence of 

maxima might also occur, we observed that, if for any reason the secondary waves do not manage 

to intersect, then there are no maxima, and the phenomenon that depends on the existence of these 

maxima cannot be noticed. This behaviour occurred in relation to the refraction, in which above the 

critical angle there are no maxima, and also in relation to the double slit, where the wavelength must 

be smaller than the distance between the slits so that different maxima occur in the central maximum.  

It seems relevant to mention that in the double slit, except for the central maximum, in the position 

of a maximum at the backstop, the secondary wavefronts of the two slits that originated from distinct 

incident plane waves reach that position at the same instant in time, that is, the secondary waves 

leave the slits at different instants in time, but can arrive at the same time at special points in the 

backstop. This explains the maxima intensity in Figure 10, even in the case of one particle at a time 

passing through the slits. 

We presented a model for optics basic phenomena, which is based on a slightly different interpretation 

of two cases, the Huygens Principle and the Huygens-Fresnel Principle. In the first case we used 

Albert Einstein’s “more realistic” strategy, in an attempt to be more realistic regarding what a photon 

or another particle would realize when going through an interface between two media, or slits. We 

then noticed that for a random scattering we would obtain perfectly the production of a Huygens’s 

“secondary wave”, which would bring about the meaning desired by the quantum mechanics, of a 

probability density wave. 

In the second case, we proposed the location of an interference maximum exactly in the intersection 

position between two of these new secondary waves, which allowed us to treat the maxima 

mathematically in a reasonably simpler way. With that, we could explain as the same phenomenon 

both the refraction/reflection and the double slit interference, in a broader way. This broader approach 

enabled us to generalize Snell’s law and Young’s double slit pattern, in addition to posing a query 

regarding the validity of the Niels Bohr’s Complementarity Principle, when Young’s pattern was 
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recovered and in the case of the particles going through the slit one at a time, since we could explain 

Young’s pattern with both descriptions, wave and particles. 

7. FINAL REMARKS 

In this study, we filled a gap left by the physicists between the boundary conditions traditionally used 

in the optics problems addressed. We showed that this gap seems to contain the region where the 

“magic” takes place, in which we clarified what might happen in a double slit, which has been 

considered a relevant “mystery” in physics for a long time. Basically, if our hypothesis of “random” 

scattering is right, both Huygens and Huygens-Fresnel Principles should attempt to clarify the 

“mystery”. After all, this random potential makes a lot of sense when we think that the double slit 

experiment was developed for photons, electrons, neutrons and even atoms, and the same pattern 

was always obtained, that is, what potential is common to all these particles? What particular potential 

is that? Is that the particular case of the “random” potential? 

In addition, due to the relevance of results, we should consider that the perceived reality through 

light might be a reality resulting from photon grouping, not only individual photons, but the reality as 

the result of a collective interference.  

The boundary conditions used ended up suggesting an optics explained by the laws of mechanics.  

It seems relevant to mention that some experimental works address the double slit case, considering 

that one particle goes through the slit at a time and even so the central maximum is present in the 

interference pattern. This places us at a point where we have two options: 1) to accept the 

experimental results and the criteria used to state that a particle is sent each time, and that a particle 

is detected at each time, with the extreme accuracy needed, since, taking our study into 

consideration, if two particles go through the slits at the same time, the central maximum becomes 

possible, which would confirm the current interpretation of the wave-particle duality; or 2) review 

these criteria and improve them by redoing the experiments with the necessary safety to state that 

the particles are sent one after the other and go through the slits one after the other. 
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APPENDIX 

Our objective in this appendix is to obtain the term given in equation (12) of the main text, that is, 

|∆𝑥| = |𝑥1,2 − 𝑥2,3|     .                                       (A1) 

Now, we use equations (4) and (6) in equations (5) and (7) and obtain,  

𝑥1,2 = √𝑅1
2 − [𝑦1,2]

2
          ,                             (A2) 

 

𝑥2,3 = √(𝑅1 − 𝐿′)2 − (𝑦1,2 +
𝐴2−𝐿′

2

𝐴
− 𝐴)

2

       .                   (A3) 

 

We work a little on the expression for 𝑥2,3, in which we identify the first term as,  

(𝑅1 − 𝐿′)2 = 𝑅1
2 − 2𝐿′𝑅1 + 𝐿′

2
          ,                           (A4) 

And the second term as,  

(𝑦1,2 +
𝐿′
2
−3𝐴2

𝐴
)
2

= [𝑦1,2]
2
+ 2(

−𝐿′
2

𝐴
) 𝑦1,2 + (

−𝐿′
2

𝐴
)
2

     .               (A5) 

Then we evidenced the term 𝑥1,2 in (A3): 

𝑥2,3 = 𝑥1,2
√
1 +

𝐿′
2
−2𝐿′𝑅1−2(

−𝐿′
2

𝐴
)𝑦1,2−(

−𝐿′
2

𝐴
)

2

𝑅1
2−[𝑦1,2]

2  .                             (A6) 

Now we can show 𝑦1,2 and use the binomial expansion by finding:   

𝑥2,3 = 𝑥1,2 +
𝐿′
2
−2𝐿′(𝑅1)−2(

−𝐿′
2

𝐴
)[
2𝐿′𝑅1−𝐿

′2+𝐴2

2𝐴
]−(

−𝐿′
2

𝐴
)

2

1

𝐴
√4𝑅1

2𝐴2−[2𝑅1(𝐿
′)−𝐿′

2
+𝐴2]

2
.                        (A7) 

 

Far from the interface, the dominant terms are of the order 𝑂(𝑅1
2) and we can abandon lower order 

terms, therefore, we obtain:  
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∆𝑥 =
−𝐿′𝐴+

1

𝐴
(𝐿′

2
)(𝐿′)

√𝐴2−(𝐿′)2
         ,                              (A8) 

or even,  

∆𝑥 = −𝐿′
√𝐴2−𝐿′

2

𝐴
           .                                 (A9) 

The refraction index 𝑛 will be found by relating the sine of the incidence angle 𝜃1 with the sine of the 

refraction angle 𝜃2, remembering equation (10):  

𝑠𝑒𝑛𝜃1

𝑣1
=

𝑠𝑒𝑛𝜃2

𝑣2
            .                                  (A10) 

 

The, we have to identify in equation (12), rewritten as (A11), the term  𝑠𝑒𝑛𝜃1 =
𝐿

√𝐿2+𝐷²
: 

𝑠𝑒𝑛𝜃2 =
|∆𝒙|

√∆𝒙𝟐+∆𝒚𝟐
             ,                               (A11) 

 

and for that, we have to remember that 𝐴 = √𝐿2 + 𝐷² e que  𝐿′ =
𝑣2𝐿

𝑣1
, thus, with equations (A9) and 

(13) we find: 

∆𝑥2 + ∆𝑦2 = −𝐿′
2
+ 𝐴2 + 2𝐿′𝜆′           .                                 (A14) 

Equation (A11) becomes: 

𝑠𝑒𝑛𝜃2 =
𝑣2𝐿

𝑣1√𝐿
2+𝐷²

          .                           (A15) 

That is, we obtain equation (A10). 


